Toggle light / dark theme

Turning captured carbon into natural gas could provide cost-competitive energy storage

Solar and wind energy are highly variable, dependent on the day, weather and location of the facilities. At times, they can generate more electricity than is needed, but they can also fall short when demand is at its peak. Unfortunately, any extra energy created by these sources is often wasted, as there are few methods that adequately store it long-term. To improve energy security in the United States, the nation requires both sources of energy and novel ways to store and distribute it.

In a new study, published in Cell Reports Sustainability, researchers from Lawrence Livermore National Laboratory (LLNL) have explored how a reactive capture and conversion (RCC) process could be used to produce synthetic renewable natural gas—a chemical form of long-duration energy storage.

“Rather than sourcing carbon from below-ground, RCC enables the use of above-ground carbon as a resource,” said LLNL scientist and lead author Alvina Aui. “Synthetic renewable natural gas, when used as an energy-storage option, can reduce grid instability caused by the intermittency of energy sources like wind and solar.”

Elemental discovery: Researchers find new oxidation state for rare earth element

A longstanding mystery of the periodic table involves a group of unique elements called lanthanides. Also known as rare earth elements, or REEs, these silvery-white metals are challenging to isolate, given their very similar chemical and physical properties. This similarity makes it difficult to distinguish REEs from one another during extraction and purification processes.

Detailed imaging of key receptors suggests new avenue for repairing brain function

For the first time, scientists using cryo-electron microscopy have discovered the structure and shape of key receptors connecting neurons in the brain’s cerebellum, which is located behind the brainstem and plays a critical role in functions such as coordinating movement, balance and cognition.

The research, published in Nature, provides new insight that could lead to the development of therapies to repair these structures when they are disrupted either by injury or affecting —sitting, standing, walking, running, and jumping—learning and memory.

The study, by scientists at Oregon Health & Science University, reveals the organization of a specific type of glutamate receptor—a that conveys signals between neurons and is considered the primary excitatory neurotransmitter in the brain—bound together with proteins clustered on synapses, or junctions, between neurons in the cerebellum.

Synthetic ‘killswitch’ uncovers hidden world of cellular condensates

Researchers at the Max Planck Institute for Molecular Genetics have developed a novel synthetic micropeptide termed the “killswitch” to selectively immobilize proteins within cellular condensates, unveiling crucial connections between condensate microenvironments and their biological functions.

Biomolecular condensates are specialized regions inside cells, existing without membranes, where critical biochemical reactions occur. Their importance in health and disease is well established, including roles in cancer progression and viral infection.

Methods to precisely probe and manipulate condensates in living cells remain limited. Existing strategies lack specificity, either dissolving condensates indiscriminately or requiring artificial protein overexpression, which obscures the natural behavior of native cellular proteins.

Engineers turn toxic ancient tomb fungus into anti-cancer drug

Penn-led researchers have turned a deadly fungus into a potent cancer-fighting compound. After isolating a new class of molecules from Aspergillus flavus, a toxic crop fungus linked to deaths in the excavations of ancient tombs, the researchers modified the chemicals and tested them against leukemia cells. The result? A promising cancer-killing compound that rivals FDA-approved drugs and opens up new frontiers in the discovery of more fungal medicines.

“Fungi gave us penicillin,” says Sherry Gao, Presidential Penn Compact Associate Professor in Chemical and Biomolecular Engineering (CBE) and in Bioengineering (BE) and senior author of a new paper in Nature Chemical Biology on the findings. “These results show that many more medicines derived from natural products remain to be found.”

Advanced algorithm to study catalysts on material surfaces could lead to better batteries

A new algorithm opens the door for using artificial intelligence and machine learning to study the interactions that happen on the surface of materials.

Scientists and engineers study the that happen on the surface of materials to develop more energy efficient batteries, capacitors, and other devices. But accurately simulating these fundamental interactions requires immense computing power to fully capture the geometrical and chemical intricacies involved, and current methods are just scratching the surface.

“Currently it’s prohibitive and there’s no supercomputer in the world that can do an analysis like that,” says Siddharth Deshpande, an assistant professor in the University of Rochester’s Department of Chemical Engineering. “We need clever ways to manage that large data set, use intuition to understand the most important interactions on the surface, and apply data-driven methods to reduce the sample space.”

Three-mode smart window cut indoor temperature by 27°C and eliminate urban glare

In the building sector, which accounts for approximately 40% of global energy consumption, heat ingress through windows has been identified as a primary cause of wasted heating and cooling energy.

A KAIST research team has successfully developed a ‘pedestrian-friendly smart window’ technology capable of not only reducing heating and cooling energy in urban buildings but also resolving the persistent issue of ‘’ in urban living.

Professor Hong Chul Moon’s research team at KAIST’s Department of Chemical and Biomolecular Engineering have developed a ‘smart window technology’ that allows users to control the light and entering through windows according to their intent, and effectively neutralize glare from external sources.

Adaptive MoS₂-based interface boosts ion sensing stability and accuracy

A research team led by Professor Huang Xingjiu at the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has developed a highly stable adaptive integrated interface for ion sensing. The study was published as an inside front cover article in Advanced Materials.

All-solid-state ion-selective electrode serves as a fundamental component in the ion sensing of intelligent biological and . While the researchers had previously developed several transducer materials with a sandwich-type interface to detect common ions, the performance of such sensors was often limited by interface material and structure.

To overcome these challenges, the team introduced a novel interface using lipophilic molybdenum disulfide (MoS₂) regulated by cetyltrimethylammonium (CTA⁺). This structure enables spatiotemporal adaptive integration—assembling single-piece sensing layers atop efficient transduction layers.

Permanent magnet configurations outperform classical arrangement to deliver strong and homogeneous fields

Physicists Prof. Dr. Ingo Rehberg from the University of Bayreuth and Dr. Peter Blümler from Johannes Gutenberg University Mainz have developed and experimentally validated an innovative approach for generating homogeneous magnetic fields using permanent magnets.

Their method outperforms the classical Halbach arrangement—which is optimal only for infinitely long and therefore unrealizable magnets—by producing higher field strengths and improved homogeneity in compact, finite-sized configurations.

The study was published in Physical Review Applied, which shows significant advances in the applied sciences at the intersection of physics with engineering, materials science, chemistry, biology, and medicine.

Gene-editing nanoparticle system targets multiple organs simultaneously

A gene-editing delivery system developed by UT Southwestern Medical Center researchers simultaneously targeted the liver and lungs of a preclinical model of a rare genetic disease known as alpha-1 antitrypsin deficiency (AATD), significantly improving symptoms for months after a single treatment, a new study shows. The findings, published in Nature Biotechnology, could lead to new therapies for a variety of genetic diseases that affect multiple organs.

“Multi-organ diseases may need to be treated in more than one place. The development of multi-organ-targeted therapeutics opens the door to realizing those opportunities for this and other diseases,” said study leader Daniel Siegwart, Ph.D., Professor of Biomedical Engineering, Biochemistry, and in the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern.

Gene editing—a group of technologies designed to correct disease-causing mutations in the genome—has the potential to revolutionize medicine, Dr. Siegwart explained. Targeting these technologies to specific organs, tissues, or will be necessary to effectively and safely treat patients.