Toggle light / dark theme

Scientists repurpose old solar panels to convert CO₂ exhaust into valuable chemicals

Centuries ago, alchemists worked furiously to convert the common metal lead to valuable gold. Today, chemists are repurposing discarded solar panels to create valuable organic compounds from carbon dioxide (CO2), a common greenhouse gas.

Significantly reducing greenhouse gases in the atmosphere to mitigate the most devastating effects of climate change will require a large reduction in emissions as well as strategies designed to sequester emitted CO2 and other offending gases. While simply sequestering greenhouse gases would fulfill this goal, creating useful organic chemicals from waste CO2 is akin to generating valuable materials from trash.

A team of chemists from Yokohama National University, Electric Power Development Co., Ltd. and the Renewable Energy Research Center at the National Institute of Advanced Industrial Science and Technology (AIST) recently decided to tackle two waste problems—excess CO2 emissions and decommissioned —in the pursuit of creating value-added organic chemicals. The team designed a study to determine if recycled components of discarded solar panels could be used to efficiently convert CO2 into useful, carbon-based compounds.

A Complete Human Genome Built from Scratch: This Unprecedented Scientific Feat Could Transform Everything We Know About Biology

IN A NUTSHELL 🌐 The SynHG project aims to synthesize a complete human genome, opening new horizons in biotechnology. ⚖️ Ethical considerations are central to the project, with a focus on responsible innovation and diverse cultural perspectives. 🧬 Initial steps involve creating a fully synthetic human chromosome, leveraging advances in synthetic biology and DNA chemistry.

Three-layered material separates charges to boost green hydrogen production

The chemical reaction to produce hydrogen from water is several times more effective when using a combination of new materials in three layers, according to researchers at Linköping University in Sweden. Hydrogen produced from water is a promising renewable energy source—especially if the hydrogen is produced using sunlight.

Canadian refinery to reuse 100% of water with GE’s wastewater treatment technology

face_with_colon_three year 2024.


GE today announced that Federated Co-Operatives Limited’s Co-op Refinery Complex in Regina, Saskatchewan, Canada, is installing GE’s advanced water recycling technology for a wastewater improvement project that will enable the refinery to clean100 percent of its wastewater on-site. Once fully operationally, the Co-op Refinery Complex will be the only refinery in North America to recycle all of its wastewater for steam production, which is used for heating, hydrogen production, to power equipment and for cooling towers.

“Water is a precious resource and our wastewater improvement project allows us to be efficient and sustainable by recovering every drop of water. With GE’s technology, the Co-op Refinery Complex will clean and recycle all of its wastewater in a socially responsible and environmentally sound way to conserve water for Regina and the entire province of Saskatchewan,” said Gil Le Dressay, vice president, refinery operations, Federated Co-Operatives Limited.

Several years ago the refinery expanded its operations to produce 30,000 more barrels of oil per day (BPD) taking it from 100,000 BPD to a 130,000-BPD facility, which increased its water usage. The refinery’s current water source is a blend of well water and city water, and restrictions on water use mandated that the Co-op Refinery Complex had to find a new source of water. GE offered a solution combining ZeeWeed* membrane bioreactor (MBR) technology and a high-efficiency reverse osmosis (HERO system to recycle and reuse 2 million gallons of wastewater a day. In addition to the water reuse solution, GE provides the refinery with wastewater specialty chemicals and monitoring solutions to provide system optimization.

Harmful algae blooms have secret to success over other algaes—manipulating its environment

An alga that threatens freshwater ecosystems and is toxic to vertebrates has a sneaky way of ensuring its success: It suppresses the growth of algal competitors by releasing chemicals that deprive them of a vital vitamin.

The finding was reported in a new study from Cornell University, describing how the cyanobacteria Microcystis aeruginosa manipulates its environment to give itself advantages to take over the water column, leading to and mats in lakes during hot summers.

“Microcystis seems to be able to dominate more and more in the changing climate,” said Beth Ahner, professor in the Department of Biological and Environmental Engineering and corresponding author of the paper.

/* */