Toggle light / dark theme

Novel catalyst design could make green hydrogen production more efficient and durable

A new type of catalyst—a material that speeds up chemical reactions—that could make the production of clean hydrogen fuel more efficient and long-lasting has been developed by a team led by City University of Hong Kong, including researchers from Hong Kong, mainland China, and Japan.

This breakthrough uses high-density single atoms of iridium (a rare metal) to greatly improve the process of splitting water into and , which is key to like hydrogen fuel cells and large-scale energy storage.

The researchers created a highly stable and active by placing single iridium atoms on ultra-thin sheets made of cobalt and cerium compounds. Called CoCe–O–IrSA, the final product performs exceptionally well in the water-splitting process. It requires very little extra energy (just 187 mV of overpotential at 100 mA cm-2) to drive the oxygen evolution reaction at a high rate, and it stays stable for more than 1,000 hours under demanding conditions.

Physicists create new electrically controlled silicon-based quantum device

A team of scientists at Simon Fraser University’s Quantum Technology Lab and leading Canada-based quantum company Photonic Inc. have created a new type of silicon-based quantum device controlled both optically and electrically, marking the latest breakthrough in the global quantum computing race.

The research, published in the journal Nature Photonics, reveals new diode nanocavity devices for electrical control over silicon color center qubits.

The devices have achieved the first-ever demonstration of an electrically-injected single-photon source in silicon. The breakthrough clears another hurdle toward building a quantum computer—which has enormous potential to provide computing power well beyond that of today’s supercomputers and advance fields like chemistry, materials science, medicine and cybersecurity.

Differences in brain chemistry shape two common movement disorders

Researchers have identified a neurochemical signature that sets Parkinson’s disease apart from essential tremor — two of the most common movement disorders, but each linked to distinct changes in the brain.

In a new study in Nature Communications, scientists identified unique chemical signaling patterns of two key neurotransmitters — dopamine and serotonin — that distinguish these two disorders.

“This study builds on decades of work,” said a co-senior author, who with colleagues developed the multi-faceted technologies and the theoretical constructs for the work over their 15 years at the research institute.

Solar breakthrough — hotter panels mean better storage

Scientists have uncovered a surprising advantage in next-generation solar technology—the hotter it gets, the better it can store energy. Traditionally, heat has been seen as the enemy of solar power. Standard solar panels lose efficiency as temperatures rise.

But a new study, published in The Journal of Chemical Physics, shows that in special “solar-plus-storage” devices, heat can actually boost performance by speeding up the internal chemical reactions that store energy.

The team studied photoelectrochemical (PEC) flow cells—an emerging technology that combines the sunlight-harvesting ability of a solar panel with the storage power of a battery.

Guava’s secret molecule could fight liver cancer

New research by William Chain, associate professor in the University of Delaware’s Department of Chemistry and Biochemistry, and his lab, uses a molecule found in a tropical fruit to offer hope in the fight against liver-related cancers, one of the world’s top causes of cancer deaths.

Using a process called natural product total synthesis, Chain and his lab group have invented a pathway that uses widely available chemicals to create molecules found in a guava plant that are known to fight these deadly cancers. The work was published in one of the leading chemistry publications, the international journal Angewandte Chemie.

The research provides scientists around the world with an easy and low cost method to create large amounts of the naturally-occurring molecules, and opens doors to more effective and cheaper treatments.


Nature has long been the source of lifesaving medicines, from willow bark’s natural aspirin to new discoveries in tropical fruits. Now, chemists at the University of Delaware have pioneered a way to recreate powerful molecules from guava plants that show promise against liver cancer. Their method provides a low-cost, scalable recipe for scientists worldwide, sparking collaboration and potentially transforming cancer treatment.

Machine learning and quantum chemistry unite to simulate catalyst dynamics

Catalysts play an indispensable role in modern manufacturing. More than 80% of all manufactured products, from pharmaceuticals to plastics, rely on catalytic processes at some stage of production. Transition metals, in particular, stand out as highly effective catalysts because their partially filled d-orbitals allow them to easily exchange electrons with other molecules. This very property, however, makes them challenging to model accurately, requiring precise descriptions of their electronic structure.

Designing efficient transition-metal catalysts that can perform under realistic conditions requires more than a static snapshot of a reaction. Instead, we need to capture the dynamic picture—how molecules move and interact at different temperatures and pressures, where atomic motion fundamentally shapes catalytic performance.

To meet this challenge, the lab of Prof. Laura Gagliardi at the University of Chicago Pritzker School of Molecular Engineering (UChicago PME) and Chemistry Department has developed a powerful new tool that harnesses electronic structure theories and machine learning to simulate transition metal catalytic dynamics with both accuracy and speed.

Advanced Membrane Science and Technology for Water and Wastewater Treatment

The pressing need for clean and affordable drinking water is intensifying as global populations rise and pollutants increasingly compromise available water sources. Traditional methods of water purification, while effective, are often insufficient to address the complex array of contaminants now present in water, including microorganisms, organic compounds, and heavy metals. Over the past four decades, significant breakthroughs in water and wastewater treatment have been achieved through the application of nanotechnology, particularly in the development of nanomaterials and nanomembranes. These science and technology advancements have revolutionized membrane-based water and wastewater treatment, offering new levels of efficiency and precision in removing a wide range of pollutants.

This Collection aims to advance our understanding of membrane-based water and wastewater treatment, underlining the challenges and opportunities within this rapidly evolving field, e.g., the limitations of conventional ultrafiltration and microfiltration membrane systems, such as their reduced effectiveness in removing certain trace organic compounds (TrOCs) and the persistent issues of membrane fouling and salinity build-up. The Collection seeks to explore innovative solutions, e.g., high-retention membrane bioreactors (HR-MBRs) and advanced pre-treatment options like advanced oxidation processes (AOPs), which have the potential to significantly improve the effectiveness and sustainability of water and wastewater treatment processes.

Moreover, the Collection emphasizes the importance of developing sustainable materials, such as biopolymers, which can replace traditional synthetic polymers in membrane fabrication. While these materials offer eco-friendly alternatives with unique adsorption properties, their performance can vary based on source and processing methods, presenting challenges in terms of durability and scalability. The Collection also aims to showcase advancements in PVDF-based membranes, which are gaining popularity due to their superior mechanical and chemical properties, and to examine the integration of these materials in innovative membrane technologies, e.g., membrane distillation (MD) and hybrid systems.

Lithium-metal batteries can charge in 12 minutes for an 800km drive

Korean researchers have ushered in a new era for electric vehicle (EV) battery technology by solving the long-standing dendrite problem in lithium-metal batteries. While conventional lithium-ion batteries are limited to a maximum range of 600 km, the new battery can achieve a range of 800 km on a single charge, a lifespan of over 300,000 km, and a super-fast charging time of just 12 minutes.

A research team from the Frontier Research Laboratory (FRL), a joint project between Professor Hee Tak Kim from the Department of Chemical and Biomolecular Engineering, and LG Energy Solution, has developed a “cohesion-inhibiting new liquid electrolyte” original technology that can dramatically increase the performance of lithium-metal batteries. Their paper is published in Nature Energy.

Lithium-metal batteries replace the graphite anode, a key component of lithium-ion batteries, with lithium metal. However, lithium metal has a technical challenge known as dendrite, which makes it difficult to secure the battery’s lifespan and stability. Dendrites are tree-like lithium crystals that form on the anode surface during battery charging, negatively affecting battery performance and stability.

First-principles simulations reveal quantum entanglement in molecular polariton dynamics

This is what fun looks like for a particular set of theoretical chemists driven to solve extremely difficult problems: Deciding whether the electromagnetic fields in molecular polaritons should be treated classically or quantum mechanically.

Graduate student Millan Welman of the Hammes-Schiffer Group is first author on a new paper that presents a hierarchy of first principles simulations of the dynamics of molecular polaritons. The research is published in the Journal of Chemical Theory and Computation.

Originally 67 pages long, the paper is dense with von Neumann equations and power spectra. It explores dynamics on both electronic and vibrational energy scales. It makes use of time-dependent density functional theory (DFT) in both its conventional and nuclear-electronic orbital (NEO) forms. It spans semiclassical, mean-field-quantum, and full-quantum approaches to simulate dynamics.

/* */