Toggle light / dark theme

Using orbital cycles to understand early life

Chengdu University of Technology-led research has established a high-resolution astrochronological framework spanning approximately 57.6 million years of the early Ediacaran Period. This calibrated timeline provides precise constraints on major climatic events and the appearance of early complex life, offering critical context for understanding environmental change and biological innovation during Earth’s early history.

Understanding on Earth has been frequently stalled by an imprecise geological clock. Scientists have relied on broad stratigraphic patterns to trace the early Ediacaran Period (635 to 538.8 million years ago), a time marked by massive climate upheavals and the first signs of complex life.

Without consistent radiometric dating, researchers have struggled to align environmental disruptions such as shifts in carbon chemistry or marine oxygen levels with biological change. It’s a bit like having a few puzzle pieces and a stack of puzzles they might have come from. Fragmented timelines have left unanswered questions about what may have triggered evolutionary steps and when they occurred.

Caterpillar factories produce fluorescent nanocarbons

Researchers led by Kenichiro Itami at the RIKEN Pioneering Research Institute (PRI) / RIKEN Center for Sustainable Resource Science (CSRS) have successfully used insects as mini molecule-making factories, marking a breakthrough in chemical engineering. Referred to as “in-insect synthesis,” this technique offers a new way to create and modify complex molecules, which will generate new opportunities for the discovery, development, and application of non-natural molecules, such as nanocarbons.

Molecular nanocarbons are super tiny structures made entirely of carbon atoms. Despite their minuscule size, they can be mechanically strong, conduct electricity, and even emit fluorescent light. These properties make them ideal for use in applications like aerospace components, lightweight batteries, and advanced electronics. However, the precision required to manufacture these tiny structures remains a major obstacle to their widespread use. Conventional laboratory techniques struggle with the fine manipulation needed to put these complex molecules together atom by atom, and their defined shapes make it especially difficult to modify them without disrupting their integrity.

“Our team has been conducting research on molecular nanocarbons, but along with that, we’ve also developed molecules that act on mammals and plants,” says Itami. “Through those experiences, we suddenly wondered — what would happen if we fed nanocarbons to insects?”

Ultrafast spin-exchange in quantum dots enhances solar energy and photochemical efficiency

Quantum dots are microscopic semiconductor crystals developed in the lab that share many properties with atoms, including the ability to absorb or emit light, a technology that Los Alamos researchers have spent nearly three decades evolving. Through carrier multiplication, in which a single absorbed photon generates two electron-hole pairs, called excitons, quantum dots have the unique ability to convert photons more efficiently to energy.

“Our work demonstrates how purely quantum mechanical spin-exchange interactions can be harnessed to enhance the efficiency of photoconversion devices or ,” says Victor Klimov, the team’s principal investigator at the Lab. “This not only deepens our fundamental understanding of quantum mechanical phenomena but also introduces a new paradigm for designing advanced materials for energy applications.”

In this latest research, published in the journal Nature Communications, Los Alamos researchers improved this ability by introducing magnetic manganese impurities into quantum dots. This novel approach to highly efficient carrier multiplication leverages ultrafast spin-exchange interactions mediated by manganese ions to capture the energy of energetic (hot) carriers generated by incident photons and convert it into additional excitons.

Zinc–iodine battery delivers double performance of lithium-ion batteries

Researchers at the University of Adelaide have developed a new dry electrode for aqueous batteries which delivers cathodes with more than double the performance of iodine and lithium-ion batteries.

“We have developed a new technique for –iodine batteries that avoids traditional wet mixing of iodine,” said the University of Adelaide’s Professor Shizhang Qiao, Chair of Nanotechnology, and Director, Center for Materials in Energy and Catalysis, at the School of Chemical Engineering, who led the team.

We mixed active materials as dry powders and rolled them into thick, self-supporting electrodes. At the same time, we added a small amount of a simple chemical, called 1,3,5-trioxane, to the electrolyte, which turns into a flexible protective film on the zinc surface during charging.

Quantum spirals: Programmable platform offers new ways to explore electrons in chiral systems

A new platform for engineering chiral electron pathways offers potential fresh insights into a quantum phenomenon discovered by chemists—and exemplifies how the second quantum revolution is fostering transdisciplinary collaborations that bridge physics, chemistry, and biology to tackle fundamental questions.

A high-resolution spectrometer that fits into smartphones

Color, as the way light’s wavelength is perceived by the human eye, goes beyond a simple aesthetic element, containing important scientific information like a substance’s composition or state.

Spectrometers are that analyze by decomposing light into its constituent wavelengths, and they are widely used in various scientific and industrial fields, including material analysis, chemical component detection, and life science research.

Existing high-resolution spectrometers were large and complex, making them difficult for widespread daily use. However, thanks to the ultra-compact, high-resolution spectrometer developed by KAIST researchers, it is now expected that light’s color information can be utilized even within smartphones or wearable devices.

How recurrent fluorescence helps organic molecules survive extreme interstellar conditions

The James Webb Space Telescope (JWST) has unlocked the depths of interstellar space with unprecedented clarity, offering humanity a high-resolution window into the cosmos. Harnessing this newfound capability, an international team of researchers set out to investigate how polycyclic aromatic hydrocarbons (PAHs)—organic molecules and key players in cosmic chemistry—survive the harsh conditions of space and uncover the mechanism behind their resilience.

Cellular coordinate system reveals secrets of active matter

All humans who have ever lived were once each an individual cell, which then divided countless times to produce a body made up of about 10 trillion cells. These cells have busy lives, executing all kinds of dynamic movement: contracting every time we flex a muscle, migrating toward the site of an injury, and rhythmically beating for decades on end.

Cells are an example of active matter. As inanimate matter must burn fuel to move, like airplanes and cars, active matter is similarly animated by its consumption of energy. The basic molecule of cellular energy is (ATP), which catalyzes that enable cellular machinery to work.

Caltech researchers have now developed a bioengineered coordinate system to observe the movement of cellular machinery. The research enables a better understanding of how cells create order out of chaos, such as during or in the organized movements of chromosomes that are a prerequisite to faithful cell division.

Scientists unlock recipe for Kryptonite-like mineral that could power a greener future

Scientists from the Natural History Museum have unraveled the geological mysteries behind jadarite, a rare lithium-bearing mineral with the potential to power Europe’s green energy transition which, so far, has only been found in one place on Earth, Serbia’s Jadar Basin.

Discovered in 2004 and described by museum scientists Chris Stanley and Mike Rumsey, jadarite made headlines for its uncanny resemblance to the chemical formula of Kryptonite, the fictional alien mineral which depletes Superman’s powers. However, today its value is more economic and environmental, offering a high lithium content and lower-energy route to extraction compared to traditional sources like spodumene.

A team of researchers at the have uncovered why this white, nodular mineral is so rare. Their findings show that to form, jadarite must follow an exact set of geological steps in highly specific conditions. This involves a strict interplay between alkaline-rich terminal lakes, lithium-rich volcanic glass and the transformation of clay minerals into crystalline structures which are exceptionally rare.

Predicting chemical storm fronts: Framework enables predictive control over patterned polymer formation

Imagine being tasked with baking a soufflé, except the only instruction provided is an ingredient list without any measurements or temperatures.

It would likely take an enormous amount of time, effort and ingredients to bake the perfect soufflé. It would require trial and error—tweaking ingredient measurements, altering the temperature and baking duration—but what if you had a model that could predict the final product before anything ever went into the mixing bowl? It would not only save weeks’ worth of time and resources but could also provide useful details like why and how the soufflé rose and collapsed when it did or why the texture didn’t turn out how you expected.

Researchers at the Beckman Institute for Advanced Science and Technology aren’t quite baking soufflés. Instead, they developed a that digs into the chemical “recipe” of polymer manufacturing to provide predictive control over how materials self-organize to give rise to new textures and properties.