Toggle light / dark theme

Chemistry at the beginning: How molecular reactions influenced the formation of the first stars

Immediately after the Big Bang, which occurred around 13.8 billion years ago, the universe was dominated by unimaginably high temperatures and densities. However, after just a few seconds, it had cooled down enough for the first elements to form, primarily hydrogen and helium. These were still completely ionized at this point, as it took almost 380,000 years for the temperature in the universe to drop enough for neutral atoms to form through recombination with free electrons. This paved the way for the first chemical reactions.

The oldest molecule in existence is the helium hydride ion (HeH⁺), formed from a neutral helium atom and an ionized hydrogen nucleus. This marks the beginning of a chain reaction that leads to the formation of molecular hydrogen (H₂), which is by far the most common molecule in the universe.

Recombination was followed by the “dark age” of cosmology: although the universe was now transparent due to the binding of , there were still no light-emitting objects, such as stars. Several hundred million years passed before the first stars formed.

Chinese Scientists Develop Breakthrough Catalyst for Clean Propane Conversion

Scientists have pioneered a water- and light-driven method for converting propane at near-room temperature, opening the door to sustainable, low-energy catalysis. Propane dehydrogenation (PDH) is a chemical process that requires a large input of heat, typically needing temperatures above 600°C wh

How materials science could revolutionise technology — with Jess Wade

Jess Wade explains the concept of chirality, and how it might revolutionise technological innovation.

Join this channel to get access to perks:
https://www.youtube.com/channel/UCYeF244yNGuFefuFKqxIAXw/join.
Watch the Q&A here (exclusively for our Science Supporters): https://youtu.be/VlkHT-0zx9U

This lecture was recorded at the Ri on 14 June 2025.

Imagine if we could keep our mobile phones on full brightness all day, without worrying about draining our battery? Or if we could create a fuel cell that used sunlight to convert water into hydrogen and oxygen? Or if we could build a low-power sensor that could map out brain function?

Whether it’s optoelectronics, spintronics or quantum, the technologies of tomorrow are underpinned by advances in materials science and engineering. For example, chirality, a symmetry property of mirror-image systems that cannot be superimposed, can be used to control the spin of electrons and photons. Join functional materials scientist Jess Wade as she explores how advances in chemistry, physics and materials offer new opportunities in technological innovation.

Study uncovers technologically appealing trick used by microalgae to manipulate light

Skoltech researchers and their colleagues have uncovered an intricate light manipulation mechanism likely used by microscopic algae to boost photosynthesis.

By studying the interaction of light with the elaborately patterned silicon dioxide shells enclosing the , the team hopes to reveal principles that could eventually be leveraged in light detectors, bio-and chemical sensors, protective coatings against ultraviolet rays, , and other nature-inspired technology, right up to artificial photosynthesis systems using CO2 and water to make fuel.

The study was published in the journal Optica.

Lunar soil could support life on the Moon, say scientists

Scientists have developed a technology that may help humans survive on the moon. In a study published in the journal Joule, researchers extracted water from lunar soil and used it to convert carbon dioxide into oxygen and chemicals for fuel—potentially opening new doors for future deep space exploration by mitigating the need to transport essential resources like water and fuel all the way from Earth.

“We never fully imagined the ‘magic’ that the lunar soil possessed,” said Lu Wang of the Chinese University of Hong Kong, Shenzhen.

“The biggest surprise for us was the tangible success of this integrated approach. The one-step integration of lunar H2O extraction and photothermal CO2 catalysis could enhance energy utilization efficiency and decrease the cost and complexity of infrastructure development.”

Scientists Create “Impossible” Molecule, Solving Century-Old Chemical Mystery

Scientists have created a once-theoretical molecule under space-like conditions, revealing new insights into the chemistry of the cosmos and the origins of complex compounds. Scientists from the University of Hawaiʻi at Mānoa’s Department of Chemistry have successfully synthesized methanetetrol.

New device converts plastic waste into fuel using catalyst-free pyrolysis

As tons of plastic waste continue to build up in landfills every day, Yale researchers have developed a way to convert this waste into fuels and other valuable products efficiently and cheaply. The results are published in Nature Chemical Engineering.

Specifically, the researchers are using a method known as pyrolysis, a process of using heat in the absence of oxygen to molecularly break materials down. In this case, it’s used to break plastics down to the components that produce fuels and other products. The study was led by Yale Engineering professors Liangbing Hu and Shu Hu, both members of the Center for Materials Innovation and Yale Energy Sciences Institute.

Conventional methods of pyrolysis often use a to speed up the and achieve a high yield, but it’s a method that comes with significant limitations.

Hybrid Crystal-Glass Materials from Meteorites Transform Heat Control

Crystals and glasses have opposite heat-conduction properties, which play a pivotal role in a variety of technologies. These range from the miniaturization and efficiency of electronic devices to waste-heat recovery systems, as well as the lifespan of thermal shields for aerospace applications.

The problem of optimizing the performance and durability of materials used in these different applications essentially boils down to fundamentally understanding how their chemical composition and atomic structure (e.g., crystalline, glassy, nanostructured) determine their capability to conduct heat. Michele Simoncelli, assistant professor of applied physics and applied mathematics at Columbia Engineering, tackles this problem from first principles — i.e., in Aristotle’s words, in terms of “the first basis from which a thing is known” — starting from the fundamental equations of quantum mechanics and leveraging machine-learning techniques to solve them with quantitative accuracy.

In research published on July 11 in the Proceedings of the National Academy of Sciences, Simoncelli and his collaborators Nicola Marzari from the Swiss Federal Technology Institute of Lausanne and Francesco Mauri from Sapienza University of Rome predicted the existence of a material with hybrid crystal-glass thermal properties, and a team of experimentalists led by Etienne Balan, Daniele Fournier, and Massimiliano Marangolo from the Sorbonne University in Paris confirmed it with measurements.

Research shows how sulfate ions increase the lifespan, performance of aqueous batteries

Scientists at King Abdullah University of Science and Technology (KAUST) have uncovered a critical molecular cause keeping aqueous rechargeable batteries from becoming a safer, economical option for sustainable energy storage.

Their findings, published in Science Advances, reveal how water compromises battery life and performance and how the addition of affordable salts—such as zinc sulfate—mitigates this issue, even increasing the battery lifespan by more than ten times.

One of the key determinants of the lifespan of a battery—aqueous or otherwise—is the . Chemical reactions at the anode generate and store the battery’s energy. However, parasitic degrade the anode, compromising the battery lifespan.

/* */