Toggle light / dark theme

Some 460 million metric tons of plastic are produced globally each year, out of which a staggering 91% of plastic waste is never recycled—with 12% incinerated and 79% left to end up in landfills and oceans and linger in our environment.

Exposure to various elements causes the plastics to break down into microplastics (5 mm) and nanoplastics (1,000 nm). There is a growing public health concern as these nanoplastics (NPs) make their way into the human body through air, water, food and contact with skin.

A recent study published in ACS ES&T Water has revealed that the already detrimental effects of NPs are further amplified by their ability to interact with various toxic environmental contaminants, such as heavy metal ions.

Roboticists, from what I’ve seen, are normally a patient bunch. The first Roomba launched more than a decade after its conception, and it took more than 50 years to go from the first robotic arm ever to the millionth in production. Venture capitalists, on the other hand, are not known for such patience.

Perhaps that’s why Bank of America’s new prediction of widespread humanoid adoption was met with enthusiasm by investors but enormous skepticism by roboticists. Aaron Prather, a director at the robotics standards organization ASTM, said on Thursday that the projections were “wildly off-base.”

As we’ve covered before, humanoid hype is a cycle: One slick video raises the expectations of investors, which then incentivizes competitors to make even slicker videos. This makes it quite hard for anyone—a tech journalist, say—to peel back the curtain and find out how much impact humanoids are poised to have on the workforce. But I’ll do my darndest.

Traditionally, bacterial diseases are diagnosed by the tedious isolation of pathogens and the creation of bacterial cultures. Waiting times of several days are the rule here. Only then can targeted treatment of the disease begin.

Researchers at the Technical University of Munich (TUM) and Imperial College London have developed a new method to identify bacteria with unprecedented speed. This means that the waiting time can be reduced from several days to just a few minutes.

The work is published in the journal Nature Communications.

Northwestern University Trustee Kimberly K. Querrey (’22, ’23 P) has made a $10 million gift to create and enhance the Querrey Simpson Institute for Regenerative Engineering at Northwestern University (QSI RENU), bringing her total giving to the institute to $35 million. The new institute will advance the development of medical tools that empower the human body to heal, focusing on the regeneration or reconstruction of various tissues and organs, such as the eyes, cartilage, spinal cord, heart, muscle, bone and skin.


The Querrey Simpson Institute for Regenerative Engineering at Northwestern University will advance research to regenerate and reconstruct tissues and organs.

Guillermo Ameer, director of the new Querrey Simpson Institute for Regenerative Engineering at Northwestern University, showcases his bioresorbable bandage, which delivers electrotherapy to wounds, accelerating diabetic ulcer healing and dissolving safely after use. QSI RENU combines engineering, biology, medicine and data science to develop technologies for tissue and organ function.

Kilili, H., Padilla-Morales, B., Castillo-Morales, A. et al. Sci Rep 15, 15,087 (2025). https://doi.org/10.1038/s41598-025-98786-3

Download citation.

The field of nanotechnology is still in its nascent stages, but recent innovations are increasingly making this science fiction world of tiny robots into a reality. New breakthrough research from a team at Caltech has demonstrated the ability of a robot made of a single strand of DNA to explore a molecular surface, pick up targeted molecules, and move them to another designated location.

“Just like electromechanical robots are sent off to faraway places, like Mars, we would like to send molecular robots to minuscule places where humans can’t go, such as the bloodstream,” says Lulu Qian, co-author on the paper. “Our goal was to design and build a molecular robot that could perform a sophisticated nanomechanical task: cargo sorting.”

Previous work by a variety of researchers has successfully demonstrated the creation of such DNA robots, but this is the first time they have been shown to pick up and transport specific molecules.