Toggle light / dark theme

An Oregon State University researcher has helped create a new 3D printing approach for shape-changing materials that are likened to muscles, opening the door for improved applications in robotics as well as biomedical and energy devices.

The liquid crystalline elastomer structures printed by Devin Roach of the OSU College of Engineering and collaborators can crawl, fold and snap directly after printing. The study is published in the journal Advanced Materials.

“LCEs are basically soft motors,” said Roach, assistant professor of mechanical engineering. “Since they’re soft, unlike regular motors, they work great with our inherently soft bodies. So they can be used as implantable medical devices, for example, to deliver drugs at targeted locations, as stents for procedures in target areas, or as urethral implants that help with incontinence.”

CATALOG, a DNA computing company, synthesized and assembled millions of nucleotides of DNA into thousands of individual strands in their Boston laboratories. That DNA was then shipped to France, where Imagene, a company specializing in robust and room-temperature storage solutions, packaged the molecules into laser-sealed, stainless steel capsules. Each capsule was sealed under an inert atmosphere — meaning there is no oxygen or moisture inside the capsule — preserving the DNA inside for tens of thousands of years. And finally, Plasmidsaurus “read” the DNA book at their headquarters in California and submitted the final sequence to the internet for everyone to enjoy. You can check out the book’s DNA sequence at CATALOG’s website, or by scanning the QR code at the bottom of this article.

Pre-Order

We’ve made 1,000 DNA capsules in total. Each capsule comes with a custom-designed display stand and a printed copy of the book. Pre-orders are open today and orders will ship in February. Our first book sold out, and we are not planning to do additional print runs. If you need any help with your order, would like to request international shipping, or plan to order more than ten copies, please email [email protected]. We’ll do our best to help!

A biomaterial that can mimic certain behaviors within biological tissues could advance regenerative medicine, disease modeling, soft robotics and more, according to researchers at Penn State.

Materials created up to this point to mimic tissues and extracellular matrices (ECMs)—the body’s biological scaffolding of proteins and molecules that surrounds and supports tissues and cells—have all had limitations that hamper their practical applications, according to the team. To overcome some of those limitations, the researchers developed a bio-based, “living” material that encompasses self-healing properties and mimics the biological response of ECMs to .

They published their results in Materials Horizons, where the research was also featured on the cover of the journal.

German scientists have created lab-grown “patches” of heart muscle tissue derived from pluripotent stem cells. Following a success with rhesus monkeys, they have obtained approval for a human trial [1].

Wear and tear

As one of the most hard-working tissues in the body, the heart muscle is subject to incessant wear and tear due to aging and various health conditions. Unsurprisingly, heart failure is one of the most common age-related causes of death.

Cryonic freezing offers a pathway to reap future medical technologies today by preserving someone for future restoration, but what would the impact of this technology be on civilization?

Get a free month of Curiosity Stream: https://curiositystream.com/isaacarthur.
Join this channel to get access to perks:
/ @isaacarthursfia.
Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a… Group: / 1,583,992,725,237,264 Reddit: / isaacarthur Twitter: / isaac_a_arthur on Twitter and RT our future content. SFIA Discord Server: / discord Credits: Cryonics: Frozen Civilizations Science & Futurism with Isaac Arthur Episode 273; January 14, 2021 Written, Produced & Narrated by Isaac Arthur Editors: Jason Burbank Jerry Guern Keith Blockus Cover Art: Jakub Grygier https://www.artstation.com/jakub_grygier Graphics: Jeremy Jozwik https://www.artstation.com/zeuxis_of_… Music: Miguel Johnson https://migueljohnson.bandcamp.com.
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.

Credits:
Cryonics: Frozen Civilizations.
Science & Futurism with Isaac Arthur.
Episode 273; January 14, 2021
Written, Produced & Narrated by Isaac Arthur.

Editors:

A large research team led by nanotechnologist Roy van der Meel rebuilt the body’s own proteins and fats into nano-delivery vans that get genetic medicines to exactly the right place in the body. In a joint effort with researchers from Radboudumc, they worked for five years on this nanotransport system, the results of which were published in Nature Nanotechnology.

With his rugged beard and signature lumberjack shirt, nanotechnologist Roy van der Meel seems to have walked straight out of a Canadian forest hut instead of a high-tech lab. In Canada, Van der Meel did indeed work as a postdoc for Professor Pieter Cullis, founder of the nanotechnology used for messenger RNA vaccines. Five years ago, he exchanged Vancouver for a spot in Eindhoven. Professor Willem Mulder brought Van der Meel to TU/e because of his RNA nanotechnology expertise.

Diseases that are currently difficult to cure, such as certain cancers and , can benefit from genetic drugs based on RNA. But then we must be able to get those medicines to the right place and that turns out to be a huge task.