Toggle light / dark theme

Colorectal cancer (CRC) is a serious public health concern worldwide. Immune checkpoint inhibition medication is likely to remain a crucial part of CRC clinical management. This study aims to create new super paramagnetic iron oxide nano-carrier (SPION) that can effectively transport miRNA to specific CRC cell lines. In addition, evaluate the efficiency of this nano-formulation as a therapeutic candidate for CRC. Bioinformatics tools were used to select a promising tumor suppressor miRNA (mir-497-5p). Green route, using Fusarium oxyporium fungal species, manipulated for the synthesis of SPION@Ag@Cs nanocomposite as a carrier of miR-497-5p. That specifically targets the suppression of PD1/PDL1 and CTLA4pathways for colorectal therapy. UV/visible and FTIR spectroscopy, Zeta potential and MTT were used to confirm the allocation of the miR-497 on SPION@Ag@Cs and its cytotoxicity against CRC cell lines. Immunofluorescence was employed to confirm transfection of cells with miR-497@NPs, and the down-regulation of CTLA4 in HT29, and Caco2 cell lines. On the other hand, PDL1 showed a significant increase in colorectal cell lines (HT-29 and Caco-2) in response to mir497-5p@Nano treatment. The data suggest that the mir-497-loaded SPION@Ag@Cs nano-formulation could be a good candidate for the suppression of CTLA4in CRC human cell lines. Consequently, the targeting miR-497/CTLA4 axis is a potential immunotherapy treatment strategy for CRC.


Elfiky, A.M., Eid, M.M., El-Manawaty, M. et al. Sci Rep 15, 4,247 (2025). https://doi.org/10.1038/s41598-025-88165-3

Download citation.

Cardiomyocytes can be implanted to remuscularize the failing heart1,2,3,4,5,6,7. Challenges include sufficient cardiomyocyte retention for a sustainable therapeutic impact without intolerable side effects, such as arrhythmia and tumour growth. We investigated the hypothesis that epicardial engineered heart muscle (EHM) allografts from induced pluripotent stem cell-derived cardiomyocytes and stromal cells structurally and functionally remuscularize the chronically failing heart without limiting side effects in rhesus macaques. After confirmation of in vitro and in vivo (nude rat model) equivalence of the newly developed rhesus macaque EHM model with a previously established Good Manufacturing Practice-compatible human EHM formulation8, long-term retention (up to 6 months) and dose-dependent enhancement of the target heart wall by EHM grafts constructed from 40 to 200 million cardiomyocytes/stromal cells were demonstrated in macaques with and without myocardial infarction-induced heart failure. In the heart failure model, evidence for EHM allograft-enhanced target heart wall contractility and ejection fraction, which are measures for local and global heart support, was obtained. Histopathological and gadolinium-based perfusion magnetic resonance imaging analyses confirmed cell retention and functional vascularization. Arrhythmia and tumour growth were not observed. The obtained feasibility, safety and efficacy data provided the pivotal underpinnings for the approval of a first-in-human clinical trial on tissue-engineered heart repair. Our clinical data confirmed remuscularization by EHM implantation in a patient with advanced heart failure.


Epicardial engineered heart muscle allografts from induced pluripotent stem cell-derived cardiomyocytes can safely and effectively remuscularize chronically failing hearts in rhesus macaques, leading to improved cardiac function and paving the way for human clinical trials.

The ideal material for interfacing electronics with living tissue is soft, stretchable, and just as water-loving as the tissue itself—in short, a hydrogel. Semiconductors, the key materials for bioelectronics such as pacemakers, biosensors, and drug delivery devices, on the other hand, are rigid, brittle, and water-hating, impossible to dissolve in the way hydrogels have traditionally been built.

A paper published today in Science from the UChicago Pritzker School of Molecular Engineering (PME) has solved this challenge that has long stymied researchers, reimagining the process of creating hydrogels to build a powerful semiconductor in hydrogel form. Led by Asst. Prof. Sihong Wang’s research group, the result is a bluish gel that flutters like a sea jelly in water but retains the immense semiconductive ability needed to transmit information between living tissue and machine.


New material from the UChicago Pritzker School of Molecular Engineering can create better brain-machine interfaces, biosensors, and pacemakers.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Mission Hospital is the first in California and among a select few in the world to offer, a revolutionary, noninvasive treatment for malignant and benign liver tumors. The procedure works by using high-energy ultrasound waves that convert to sonic beams and destroy liver tumors without a single incision.

Because the innovative procedure is noninvasive, it minimizes the risk of infection, bleeding and other complications. can be used to effectively treat liver tumors in patients who are not candidates for open surgery or have been told their liver tumor is inoperable. The procedure is compatible with chemotherapy and/or radiation therapy and can also be used to treat metastatic cancer that has spread to the liver.

During the procedure, targeted ultrasound waves form bubble clouds that implode and collapse rapidly, destroying only tumor cells. After tumors are liquefied by the sonic beam, only tiny molecules remain in the body. These microscopic fragments are too small to allow the cancer to spread and regrow.

Dr. Masayo Takahashi graduated from Kyoto University’s Faculty of Medicine in 1986. In 1992, she completed her Ph.D. in Visual Pathology at Kyoto University’s Graduate School of Medicine. She first worked as a clinician, but later became interested in research following her studies in the United States in 1995. In 2005, her lab became the first in the world to successfully differentiate neural retina from embryonic stem cells. She is currently the project leader of the Laboratory for Retinal Regeneration at the RIKEN Center for Developmental Biology (CDB).

Recently in Japan they restored vision of three people using puliportent stem cells.


Then, in March 2017, Dr. Takahashi and her team made another important step forward. While the 2014 surgery had used cells generated from the patient’s own tissues, Dr. Takahashi and her team succeeded this time in the world’s first transplantation of RPE cells generated from iPS cells that originated from another person (called “allogeneic transplantation”) to treat a patient with wet-type AMD. Currently, the patient is being monitored for the possibility of rejection, which is a risk of allogeneic transplantation. Regarding the significance of the operation, Dr. Takahashi explains that “allogeneic transplantation substantially reduces the time and cost required in producing RPE cells, creating opportunities for even more patients to undergo surgeries. Hearing patients’ eager expectations firsthand when working as a clinician has also been a significant motivation.”

Dr. Takahashi’s team is currently making preparations for clinical studies that will target retinitis pigmentosa, a hereditary eye disease, by transplanting photoreceptor cells. “Having my mind set on wanting to see applications of iPS cells in treatments as quickly as possible, I have been actively involved in the creation of the regulations for their practical applications in regenerative medicine. In Japan, where clinical studies and clinical trials can be conducted at the same time, there is significant merit in the fact that research can be carried out by doctors who also work in medical settings. This helps ensure that they proceed with a sense of responsibility and strong ethics. Our advanced clinical studies have attracted the attention of researchers working in regenerative medicine in various countries. I intend to maintain a rapid pace of research so that we can treat the illnesses of as many patients as possible.”

This unique material can behave like a fluid, flowing and deforming with minimal resistance, yet it can also instantly become rigid, acting like a solid. It’s called PAM (or Polycatenated Architected Material). Its unique structure, inspired by chain mail, features interlinked shapes forming intricate three-dimensional networks. Unlike traditional materials, which are either solid with fixed structures or granular with loose, independent particles, PAMs occupy a fascinating middle ground. When subjected to shear stress, for example, the interconnected components can slide past each other, offering little resistance, much like water or honey. However, when compressed, these same components lock together, creating a rigid structure. This transition between fluid and solid-like behavior is what makes PAMs so unique. PAMs represent a new class of matter, defying the traditional classification of materials as either solid or granular. They are a hybrid, bridging the gap between these two extremes. This dynamic behavior is achieved through the intricate design of PAMs. Researchers at Caltech create these materials using 3D printing. They begin by modeling the structures on a computer, mimicking crystal lattices but replacing the fixed particles with interconnected rings or cages. These designs are then brought to life using various materials, from polymers to metals. The resulting PAMs, often small cubes or spheres, undergo rigorous testing to understand their response to different forces. They are compressed, sheared, and twisted, revealing their unusual properties. The potential applications for PAMs are vast and varied. Their ability to absorb energy efficiently makes them ideal candidates for protective gear, such as helmets, potentially offering superior protection compared to current foam-based solutions. This same property could also be utilized in packaging and other applications requiring cushioning or stabilization. Experiments with microscale PAMs have shown that they respond to electrical charges, suggesting possibilities in biomedical devices and soft robotics. Researchers are also exploring the vast design space of PAMs, using advanced techniques like artificial intelligence to discover new configurations and functionalities. While still in its early stages, PAM research promises to revolutionize material science and engineering, opening up new possibilities for a wide range of applications.

Instagram: / hashem.alghaili.
Facebook: / sciencenaturepage.
Other channels: https://muse.io/hashemalghaili

Imagine smartphones that can diagnose diseases, detect counterfeit drugs or warn of spoiled food. Spectral sensing is a powerful technique that identifies materials by analyzing how they interact with light, revealing details far beyond what the human eye can see.

Traditionally, this technology required bulky, expensive systems confined to laboratories and industrial applications. But what if this capability could be miniaturized to fit inside a smartphone or ?

Researchers at Aalto University in Finland have combined miniaturized hardware and intelligent algorithms to create a powerful tool that is compact, cost-effective, and capable of solving real-world problems in areas such as health care, food safety and autonomous driving. The research is published in the journal Science Advances.

Researchers have used quantum physics and machine learning to quickly and accurately understand a mound of data – a technique, they say, could help extract meaning from gargantuan datasets.

Their method works on groundwater monitoring, and they’re trialling it on other fields like traffic management and medical imaging.

“Machine learning and artificial intelligence is a very powerful tool to look at datasets and extract features,” Dr Muhammad Usman, a quantum scientist at CSIRO, tells Cosmos.