Scientists create smart cells that administer automatic treatments from inside the human body, reacting within seconds to disease markers.

A robot trained on videos of surgeries performed a lengthy phase of a gallbladder removal without human help. The robot operated for the first time on a lifelike patient, and during the operation, responded to and learned from voice commands from the team—like a novice surgeon working with a mentor.
The robot performed unflappably across trials and with the expertise of a skilled human surgeon, even during unexpected scenarios typical in real-life medical emergencies.
The work, led by Johns Hopkins University researchers, is a transformative advancement in surgical robotics, where robots can perform with both mechanical precision and human-like adaptability and understanding.
Going forward, AI has the potential to help balance needs across regions, ensuring care delivery doesn’t compromise chronic or long-term care in the face of emergencies.
Ethical Considerations And Systemic Impact
While AI holds significant promise in healthcare, its implementation must be approached thoughtfully. Challenges such as bias in training data, lack of interoperability and concerns around patient consent and data privacy (particularly under HIPAA) need to be proactively addressed. Effective deployment of AI requires close collaboration between policymakers, clinicians and technologists to establish standards that ensure equitable and inclusive outcomes.
What if we could prevent people from developing obesity? The World Obesity Federation expects more than half the global population to develop overweight or obesity by 2035. However, treatment strategies such as lifestyle change, surgery and medications are not universally available or effective.
By drawing on genetic data from over five million people, an international team of researchers has created a genetic test called a polygenic risk score (PGS) that predicts adulthood obesity already in early childhood. This finding could help to identify children and adolescents at higher genetic risk of developing obesity, who could benefit from targeted preventative strategies, such as lifestyle interventions, at a younger age.
“What makes the score so powerful is its ability to predict, before the age of five, whether a child is likely to develop obesity in adulthood, well before other risk factors start to shape their weight later in childhood. Intervening at this point can have a huge impact,” says Assistant Professor Roelof Smit from the NNF Center for Basic Metabolic Research (CBMR) at the University of Copenhagen and lead author of the research published in Nature Medicine.
The human gut microbiome has been shown to impact health in a myriad of ways. The type and abundance of different bacteria can impact everything from the immune system to the nervous system. Now, researchers at Stanford University are taking advantage of the microbiome’s potential for fighting disease by genetically modifying certain bacteria to reduce a substance that causes kidney stones. If scientists are successful at modifying gut bacteria, this can lead to therapeutic treatments for a wide range of diseases.
However, the study, published in Science, shows that this is not a simple task. The researchers used the bacterium Phocaeicola vulgatus, which is already found in the microbiome of humans, and modified it to break down oxalate and also to consume porphyran, a nutrient derived from seaweed. The porphyran was used as a way to control the population of Phocaeicola vulgatus by either adding more porphyran or reducing the amount, which should kill off the bacteria due to a lack of food.
The study was made up of three parts: one testing the modified bacteria on rats, one trial with healthy humans and one trial on people with enteric hyperoxaluria (EH). EH is a condition in which the body absorbs too much oxalate from food, leading to kidney stones and other kidney issues, if not treated.
Scientists have used DNA's self-assembling properties to engineer intricate moiré superlattices at the nanometer scale—structures that twist and layer like never before. With clever molecular “blueprints,” they’ve created customizable lattices featuring patterns such as honeycombs and squares, all with remarkable precision. These new architectures are more than just scientific art—they open doors to revolutionizing how we control light, sound, electrons, and even spin in next-gen materials.
Huntington’s disease is an autosomal dominant neurodegenerative disease caused by the repetition of cytosine, adenine, and guanine trinucleotides on the short arm of chromosome 4p16.3 within the Huntingtin gene. In this study, we aim to examine and map the existing evidence on the use of innovations in the rehabilitation of Huntington’s disease. A scoping review was conducted on innovative rehabilitative treatments performed on patients with Huntington’s disease. A search was performed on PubMed, Embase, Web of Science, and Cochrane databases to screen references of included studies and review articles for additional citations. Of an initial 1,117 articles, only 20 met the search criteria. These findings showed that available evidence is still limited and that studies generally had small sample sizes and a high risk of bias.