Toggle light / dark theme

Northwestern Medicine investigators have identified novel mechanisms regulating the development of the spinal column during embryonic development, findings that could inform new treatments for congenital scoliosis and other related birth defects, according to a recent study published in Nature Communications.

The spinal column of all vertebrate species, including humans, is divided into segments (vertebral discs), which give the spine both flexibility and mobility.

During early , these discs develop from specialized cells called somites and are sequentially “sliced” into separate discs, a process driven by a called the vertebrate segmentation clock.

For the first time, scientists have acquired direct evidence of rare, pulsing pear-shaped structures within atomic nuclei of the rare-earth element gadolinium, thanks to new research led by the University of Surrey, the National Physical Laboratory (NPL) and the IFIN-HH research institute in Bucharest, Romania.

The study, published in Physical Review Letters, provides definitive proof of a strong collective “octupole excitation” in the nucleus of gadolinium-150, a long-lived radioactive isotope of this rare-earth element, which is used in applications such as superconductors, nuclear power operations and MRI contrast materials.

The experimental signature is interpreted as the protons and neutrons inside the atomic nucleus vibrating in a coordinated pattern, resulting in a pulsing, asymmetric, pear-shaped structure.

One of the most enduring questions humans have is how long we’re going to live. With this comes the question of how much of our lifespan is shaped by our environment and choices, and how much is predetermined by our genes.

A study recently published in the prestigious journal Nature Medicine has attempted for the first time to quantify the relative contributions of our environment and lifestyle versus our genetics in how we age and how long we live.

The findings were striking, suggesting our environment and lifestyle play a much greater role than our genes in determining our longevity.

An interesting article where Lee et al. develop a new chemical label for studying the dynamics of select glycolipids found in tuberculosis bacteria. They target specific types of glycolipids that are involved in pathogenesis, opening the door to new insights on tuberculosis. As tuberculosis kills more than a million people every year, tools for studying the disease are sorely needed. #chemicalbiology #chemistry #microbiology

Central sensitization: analysis by physio meets science.

Neurophysiological Mechanism of Central Sensitization in the Spinal Cord following Surgery:

▶️ Central sensitization was first described by Woolf in 1983 (https://pubmed.ncbi.nlm.nih.gov/6656869/) as a form of long-term adaptive neuroplasticity that amplifies the transmission of nociceptive information by affecting spinal cord neurons and is believed to be a principal neurophysiological mechanism with regard to pain persistence.

▶️ Peripheral nociception can trigger a prolonged increase in the excitability of dorsal root ganglia (DRG) neurons, which transmit nociceptive signals to the spinal cord, resulting in central sensitization.

▶️ This condition involves heightened responsiveness of spinal neurons, driven by signaling molecules like adenosine triphosphate (ATP) and neurotransmitters such as glutamate (Glu) and substance P (SP).

▶️ These molecules activate specific receptors on spinal neurons, including purinergic receptor 2 (P2-R), N-methyl-D-aspartate receptor (NMDAR), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), and neurokinin 1 receptor (NK1R).

▶️ The activation of these receptors sets off a cascade of intracellular pathways involving enzymes like calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), protein kinase A (PKA), mechanistic target of rapamycin (mTOR), phosphoinositide 3-kinase (PI3K), and extracellular signal-regulated kinases 1/2 (ERK1/2), all of which amplify the transmission of nociceptive signals to the brain.

Key Takeaways A study found that some organs age faster than a person’s actual ageFaster organ aging is linked to diseases like cancer, dementia and heart diseaseA blood test could help detect early signs of organ aging.

MONDAY, March 17, 2025 (HealthDay News) — Your organs might be aging faster than you are — and that could increase your risk for serious diseases, including cancer, heart disease and dementia.

We move thanks to coordination among many skeletal muscle fibers, all twitching and pulling in sync. While some muscles align in one direction, others form intricate patterns, helping parts of the body move in multiple ways.

In recent years, scientists and engineers have looked to muscles as potential actuators for “biohybrid” robots—machines powered by soft, artificially grown . Such bio-bots could squirm and wiggle through spaces where traditional machines cannot. For the most part, however, researchers have only been able to fabricate artificial muscle that pulls in one direction, limiting any robot’s range of motion.

Now MIT engineers have developed a method to grow artificial muscle tissue that twitches and flexes in multiple coordinated directions. As a demonstration, they grew an artificial, muscle-powered structure that pulls both concentrically and radially, much like how the iris in the human eye acts to dilate and constrict the pupil.

A new study probing quantum phenomena in neurons as they transmit messages in the brain could provide fresh insight into how our brains function.

In this project, described in the Computational and Structural Biotechnology Journal, theoretical physicist Partha Ghose from the Tagore Centre for Natural Sciences and Philosophy in India, together with theoretical neuroscientist Dimitris Pinotsis from City St George’s, University of London and the MillerLab of MIT, proved that established equations describing the classical physics of brain responses are mathematically equivalent to equations describing quantum mechanics. Ghose and Pinotsis then derived a Schrödinger-like equation specifically for neurons.

Our brains process information via a vast network containing many millions of neurons, which can each send and receive chemical and electrical signals. Information is transmitted by nerve impulses that pass from one neuron to the next, thanks to a flow of ions across the neuron’s cell membrane. This results in an experimentally detectable change in electrical potential difference across the membrane known as the “action potential” or “spike”

The device provides a range of sensations, such as vibrations, pressure, and twisting. A team of engineers led by Northwestern University has developed a new wearable device that stimulates the skin to deliver a range of complex sensations. This thin, flexible device gently adheres to the skin, offering more realistic and immersive sensory experiences. While it is well-suited for gaming and virtual reality (VR), the researchers also see potential applications in healthcare. For instance, the device could help individuals with visual impairments “feel” their surroundings or provide feedback to those with prosthetic limbs.