Toggle light / dark theme

Tianjin trials brain-computer interface for neurocritical care

China initiated its first multi-center clinical trial for brain-computer interface technology in neurocritical care on Sunday, marking a significant expansion of BCI applications beyond the rehabilitation of motor and cognitive functions.

The trial, launched in Tianjin, aims to explore new therapeutic approaches for severe neurological conditions.

Led by the Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration at Tianjin University and Tianjin Huanhu Hospital, the project brings together leading medical institutions from Beijing, Tianjin, Henan province, and other regions.

“This initiative will pave the way for broader medical applications, offering Chinese technologies, standards, and protocols for precise management of neurocritical conditions,” said Liu Xiuyun, deputy director of the Haihe Laboratory.

Scientists Achieve First DNA-Free Gene Editing In Raspberry Plants Using CRISPR Technology

Scientists have achieved the first DNA-free CRISPR gene editing in raspberries, reaching 19% efficiency and opening the door to faster breeding of firmer, more resilient berries — though regenerating full plants remains a hurdle.

Cambridge study shows stem cell grafts can restore myelin in MS lesions in mice

Multiple sclerosis (MS) is an autoimmune disease where the body’s immune system mistakenly attacks the central nervous system, leading to the destruction of myelin, the protective sheath surrounding nerve fibres. This damage is a leading cause of neurological disability in young adults.

In the early stages of MS, certain cells possess the capacity to partially repair this damage by generating new myelin. However, this regenerative ability reduces significantly in the later, chronic progressive stage of the disease. This decline in repair contributes to further damage to neurons and increasing disability in individuals with progressive MS.

Despite advancements in treatments, current therapies mostly focus on managing symptoms but do not halt or reverse the damage and neurodegeneration caused. This shows the critical need for a more profound understanding of how MS progresses and to explore how stem cell technologies could help MS treatment.

The study, published in the journal Brain, was spearheaded by University of Cambridge scientist Dr. Luca Peruzzotti-Jametti and offers crucial insights into the potential of neural stem cell transplantation in people with progressive MS. While neural stem cell transplants present a promising avenue for repairing the damaged central nervous system, the limits of their capacity to repair are being investigated by researchers.

(Utilizng stem cells for many innovative treatments is not a question of how, but rather when)


A study led by Cambridge researchers has shed light on how neural stem cell grafts could help restore myelin in the central nervous system. The findings suggest that neural stem cell-based therapies hold promise as a potential treatment for chronic demyelinating disorders, particularly progressive multiple sclerosis.

Artificial heart valve found to be safe following long-term test in animals

A research team, led by the Universities of Bristol and Cambridge, demonstrated that the polymer material used to make the artificial heart valve is safe following a six-month test in sheep.

Currently, the 1.5 million patients who need heart valve replacements each year face trade-offs. Mechanical heart valves are durable but require lifelong blood thinners due to a high risk of blood clots, whereas biological valves, made from animal tissue, typically last between eight to 10 years before needing replacement.

The artificial heart valve developed by the researchers is made from SEBS (styrene-block-ethylene/butyleneblock-styrene) – a type of plastic that has excellent durability but does not require blood thinners – and potentially offers the best of both worlds. However, further testing is required before it can be tested in humans.


An artificial heart valve made from a new type of plastic could be a step closer to use in humans, following a successful long-term safety test in animals.

‘Universal’ Cancer Vaccine Destroys Resistant Tumors in Mice

Scientists are making encouraging progress in developing vaccines to treat cancer, but so far the therapies have been restricted to specific types of tumor. Now new research points the way to a universal vaccine that could attack a wider range of cancers.

The research led by a team at the University of Florida focuses on “waking up” the immune system to better respond to more types of cancerous cell – tumors that would otherwise be missed for a variety of reasons.

“What we found is by using a vaccine designed not to target cancer specifically but rather to stimulate a strong immunologic response, we could elicit a very strong anti-cancer reaction,” says neuroscientist Duane Mitchell.

Microglia gene activity shifts across Alzheimer’s stages, revealing possible therapy targets

Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that causes progressive memory loss and a decline in mental (i.e., cognitive) abilities. Statistics suggest that between 500,000 and 900,000 people are diagnosed with this disease every year, while several hundreds of thousands experience dementia or other aging-related cognitive decline.

While there are some available treatments designed to delay cognitive decline in individuals with mild or moderate AD symptoms, a cure for the disease has not yet been identified. A better understanding of the neural, genetic, cellular and that contribute to the disease’s progression, as well as to neurodegeneration in general, could thus be highly valuable, as it could inform the future development of alternative treatments.

Past neuroscience research has identified the key role of microglia in AD. These are specialized that monitor the environment in the brain, clearing out , debris and pathogens. The dysregulation of these cells has been linked to neurodegeneration and to the progression of AD.

The AI breakthrough that uses almost no power to create images

From creating art and writing code to drafting emails and designing new drugs, generative AI tools are becoming increasingly indispensable for both business and personal use. As demand increases, they will require even more computing power, memory and, therefore, energy. That’s got scientists looking for ways to reduce their energy consumption.

In a paper published in the journal Nature, Aydogan Ozcan, from the University of California Los Angeles, and his colleagues describe the development of an AI image generator that consumes almost no power.

AI image generators use a process called diffusion to generate images from text. First, they are trained on a large dataset of images and repeatedly add a statistical noise, a kind of digital static, until the image has disappeared.

The anti-Kronos effect: How bacterial viruses protect their offspring to maximize spread

University of Toronto researchers have uncovered how bacterial viruses protect their progeny in order to maximize their reach. The phenomenon, described in a study published in Nature, relies on viral proteins to fine-tune structures on the surface of the bacterial host cell and is widely conserved—pointing to a previously unknown parallel between microbial and human immunity.

The researchers dubbed their discovery the anti-Kronos effect, after the Greek god who ate his children.

Researchers have long known that once a cell is infected by a , it can block subsequent reinfection by the same or closely related viruses. This process, called superinfection exclusion, was first described in bacteriophages, the viruses that infect .

Biomarker brings ER+ breast cancer patients one step closer to more personalized therapy

A new study by researchers at Baylor College of Medicine brings hope for a more personalized approach to treating estrogen receptor-positive (ER+) breast cancer, the most common type of this cancer. The team identified a biomarker in preclinical ER+ breast cancer models that indicates that the tumor is more likely to respond to treatment with CDK4/6 inhibitors.

The findings support further clinical studies to determine whether this marker may help identify patients who could benefit from CDK4/6 inhibitors. The study appears in Science Translational Medicine.

ER+ breast cancers rely on estrogen to grow and are typically treated by endocrine therapies that block the effects of estrogen. To improve outcomes, drugs called CDK4/6 inhibitors, such as abemaciclib and ribociclib, are added to endocrine therapy to prevent relapse.

/* */