Researchers used artificial intelligence to mine global venom proteomes and discovered novel peptides with antimicrobial activity. Several candidates showed efficacy against drug-resistant bacteria in laboratory and animal tests.

An experimental mRNA vaccine boosted the tumor-fighting effects of immunotherapy in a mouse-model study, bringing researchers one step closer to their goal of developing a universal vaccine to “wake up” the immune system against cancer.
Published today in Nature Biomedical Engineering, the University of Florida study showed that like a one-two punch, pairing the test vaccine with common anticancer drugs called immune checkpoint inhibitors triggered a strong antitumor response.
A surprising element, researchers said, was that they achieved the promising results not by attacking a specific target protein expressed in the tumor, but by simply revving up the immune system — spurring it to respond as if fighting a virus. They did this by stimulating the expression of a protein called PD-L1 inside of tumors, making them more receptive to treatment. The research was supported by multiple federal agencies and foundations, including the National Institutes of Health.
What has not yet been tried? These are the questions that Inserm research director Nicolas L’Heureux has asked himself every day for a long time, « like a game ». Which means that from very early on he had the idea of pushing the limits of vascular tissue engineering – a field in which he had begun working when doing his M.Sc. « When performing a cardiac or other type of bypass, preference is given to using the patient’s own vessels that are taken from one place and transplanted into another, more critical, one. An autologous graft continues to remain the best solution, but it is a limited resource. » Diseases such as stroke, hyperlipidemia, and thrombosis, which have the particularity of being systemic – in which they attack all vessels to varying degrees –, as well as aging, weaken our vessels. And the earlier the need for surgery, the greater the likelihood of a second intervention. « A transplanted artery will withstand an average of ten years and a vein six to seven years. » Which just leaves synthetic grafts. https://www.inserm.fr/en/news/nicolas-lheureux-artificial-bl…iological/
See relevant content for m.
What if there was a way to make aging brain cells younger again? An international research team from Spain and Luxembourg recently set out to address this question. After developing an aging clock capable of assessing the biological age of the brain, they used it to identify possible brain-rejuvenating interventions. The computational tool they created, recently presented in the journal Advanced Science, constitutes a valuable resource to find compounds with therapeutic potential for neurodegenerative diseases.
As the world population is aging rapidly, with over two billion people projected to be above the age of 60 by 2050, age-related brain disorders are on the rise. Living longer but in poor health is not only a daunting prospect, it also places a substantial burden on health care systems worldwide. The idea of being able to counteract the functional decline of our brain through rejuvenating interventions therefore sounds promising.
The question is, how can we identify compounds that have the potential to efficiently rejuvenate brain cells and to protect the aging population from neurodegeneration? Prof. Antonio Del Sol and his teams of computational biologists, based both at CIC bioGUNE, member of BRTA, and the Luxembourg Centre for Systems Biomedicine (LCSB) from the University of Luxembourg, used their machine learning expertise to tackle the challenge.
A new study by Indiana University School of Medicine researchers has revealed a breakthrough in the fight against acute myeloid leukemia, one of the most aggressive and fatal blood cancers in adults. The discovery of a previously unrecognized immune cell could lead to new therapies that are less treatment-resistant than current options for patients—meaning higher survival rates for people with blood cancers.
Acute myeloid leukemia is a cancer that begins in the bone marrow and leads to impaired blood cell formation and function. Currently the sixth-leading cause of cancer-related death in adults, acute myeloid leukemia is resistant to many treatment options and relapse is common.
“Despite transformative progress in the treatment of many blood cancers, acute myeloid leukemia therapies have remained largely unchanged for over three decades,” said Reuben Kapur, Ph.D., director and program leader of the Hematologic Malignancies and Stem Cell Biology Program at the IU School of Medicine Herman B Wells Center for Pediatric Research, a researcher with the IU Melvin and Bren Simon Comprehensive Cancer Center and co-author of the study.
Almost 200 million people, including children, around the world have endometriosis, a chronic disease in which the lining of the uterus grows outside of the uterus. More severe symptoms, such as extreme pain and potentially infertility, can often be mitigated with early identification and treatment, but no single point-of-care diagnostic test for the disease exists despite the ease of access to the tissue directly implicated.
While Penn State Professor Dipanjan Pan said that the blood and tissue shed from the uterus each month is often overlooked—and even stigmatized by some—as medical waste, menstrual effluent could enable earlier, more accessible detection of biological markers to help diagnose this disease.
Pan and his group have developed a proof-of-concept device capable of detecting HMGB1, a protein implicated in endometriosis development and progression, in menstrual blood with 500% more sensitivity than existing laboratory approaches. The device, which looks and operates much like a pregnancy test in how it detects the protein, hinges on a novel technique to synthesize nanosheets made of the atomically thin 2D material borophene, according to Pan, the Dorothy Foehr Huck & J. Lloyd Huck Chair Professor in Nanomedicine and corresponding author of the study detailing the team’s work.
For patients with Parkinson’s disease, changes in their ability to walk can be dramatic. “Parkinson’s gait,” as it is often called, can include changes in step length and asymmetry between legs. This gait dysfunction reduces a person’s mobility, increases fall risk, and significantly impacts a patient’s quality of life.
While high-frequency deep brain stimulation (DBS) is highly effective for lessening symptoms of tremors, rigidity, and bradykinesia (the slowing of movement), its impact on gait has been more variable and less predictable among patients with advanced gait-related problems. Significant challenges in enhancing DBS outcomes for advanced gait disorders have included the lack of a standardized gait metric for clinicians to use during programming, as well as understanding the impact of different stimulation factors on gait.
In a recent study, researchers at UCSF developed a systematic way to quantify key aspects of gait relevant to Parkinson’s and used machine learning to identify the best DBS settings for each individual. These personalized settings led to meaningful improvements in walking, such as faster, more stable steps, without worsening other symptoms.