Toggle light / dark theme

Recent advances in the fields of human-infrastructure interaction, electronic engineering, robotics and artificial intelligence (AI) have opened new possibilities for the development of assistive and medical technologies. These include devices that can assist individuals with both physical and cognitive disabilities, supporting them throughout their daily activities.

Researchers at the University of Michigan recently developed CoNav, a smart controlled via a Robot Operating System (ROS) based framework. The new wheelchair, presented in a paper on the arXiv preprint server, could help to improve the quality of life of individuals who are temporarily or permanently unable to walk, allowing them to move in their surroundings more intuitively and autonomously.

“The inspiration for this work stems from a broader challenge in assistive mobility for people with disabilities (PWD),” Vineet Kamat, senior author of the paper, told Tech Xplore.

The Sudan virus, a close relative of Ebola, has a fatality rate of 50% but remains poorly understood in terms of how it infects cells. Currently, no approved treatments exist. To address this critical gap in pandemic preparedness, researchers at the University of Minnesota and the Midwest Antiviral Drug Discovery (AViDD) Center investigated how this deadly virus attaches to human cells.

Like Ebola, the Sudan virus enters cells by binding to NPC1, a protein responsible for cholesterol transport. Using , the researchers mapped how the Sudan virus interacts with the human NPC1 receptor. Their findings revealed that four key amino acid differences in the receptor-binding proteins of Sudan and Ebola viruses enable the Sudan virus to bind to human NPC1 with nine times greater affinity than Ebola, which may contribute to its high fatality rate.

Building on this discovery, the team predicted the receptor-binding affinities of three other filoviruses closely related to Sudan and Ebola. They also examined how the Sudan virus binds to NPC1 receptors in bats, which are believed to be natural hosts of filoviruses. These findings provide crucial insights into the infection mechanisms and evolutionary origins of Sudan virus and related filoviruses, paving the way for potential treatments.

An international team of engineers and physicists have found a way to use quantum light to improve the performance of cutting-edge spectroscopy.

Their new technique enables measurements of infrared electric fields which are twice as sensitive as previous developments in a process called time-domain spectroscopy.

The researchers say their work could help open up new applications in security and medical diagnostics.

Question Were the liberalization of medical cannabis and the legalization of nonmedical cannabis in Canada associated with changes in the population-attributable fraction of cannabis use disorders associated with schizophrenia?

Findings In this population-based cohort study comprising 13 588 681 individuals, the population-attributable fraction of cannabis use disorder associated with schizophrenia increased significantly from 3.7% in the prelegalization period to 10.3% during the postlegalization period.

Meaning These findings suggest that the association between cannabis use disorders and schizophrenia is an important consideration for the legalization of cannabis.

Researchers using intracranial electroencephalogram (EEG) recordings from deep within the brain found that meditation led to changes in activity in the amygdala and hippocampus, key brain regions involved in emotional regulation and memory.

The study, conducted by researchers at the Icahn School of Medicine at Mount Sinai and published Tuesday, February 4, in Proceedings of the National Academy of Sciences, may help explain the positive impact these practices have and could contribute to the development of -based approaches for improving memory and emotional regulation.

Previous research has shown that meditation—a set of mental techniques to focus attention and awareness—can improve mental well-being and potentially help improve psychiatric diseases like anxiety and depression. In combination with its beneficial clinical effect, previous brain research has shown a connection between meditative practice and brain activity. Yet the specific neural activity underlying meditative practices and their positive effects is still not well understood.

Hepatocellular carcinoma (HCC) is the most common primary liver cancer, affecting millions of people worldwide. Due to the complexity and variability of the disease, there are major challenges in the treatment of HCC in its intermediate and advanced stages; despite advances in various treatment modalities, there are still gaps in our understanding of effective therapeutic strategies. Key findings from several studies have shown that the combination of immunotherapy and targeted therapy has a synergistic anti-tumor effect, which can significantly enhance efficacy with a favorable safety profile. In addition, other studies have identified potential biomarkers of therapeutic response, such as tumor protein 53 (TP53) and CTNNB1 (encoding β-conjugated proteins), thus providing personalized treatment options for patients with intermediate and advanced hepatocellular carcinoma. The aim of this article is to review the recent advances in the treatment of intermediate and advanced HCC, especially targeted immune-combination therapy, chimeric antigen receptor T cell therapy (CAR-T cell therapy), and gene therapy for these therapeutic options that fill in the gaps in our knowledge of effective treatment strategies, providing important insights for further research and clinical practice.

Hepatocellular carcinoma is a common malignant tumor, ranking sixth and fifth in incidence globally and in China, respectively. It ranks among the top three in mortality and has long been recognized as a global challenge. HCC is the most common type of liver cancer, accounting for 75% to 80% of cases. Its incidence and mortality vary significantly across regions, which is closely related to risk factors such as viral hepatitis (e.g., hepatitis B and C), alcoholic and non-alcoholic cirrhosis, and fatty liver. Treatment options for HCC include surgical resection, percutaneous anhydrous ethanol injection, Transcatheter arterial embolization (TACE), ablative therapy, chemotherapy and liver transplantation. Early stage HCC can be completely cured by surgery, but about 70% of patients have progressed to an intermediate and advanced stage at the time of diagnosis and are unable to undergo surgery.

A disrupted protein degradation process in heart muscle cells can lead to a range of severe heart diseases. In the case of dilated cardiomyopathy, a pathological enlargement of the heart chambers, researchers at the Max Planck Institute for Heart and Lung Research in Bad Nauheim have now identified a cause: a low level of the enzyme Ubiquitin-specific peptidase 5 (USP5) leads to an accumulation of Ubiquitin in heart muscle cells and the formation of protein aggregates, which trigger heart diseases. Increasing USP5 levels in heart muscle cells protects the heart from harmful degradation processes, offering a perspective for new therapies.

Dilated cardiomyopathy is a pathological enlargement of one or both heart chambers, including the atria. The resulting restriction of heart function is caused by structural damage to . The consequence is , which can lead to death without a heart transplant. Existing can usually not stop or reverse the progression of the disease.

In search of new therapeutic approaches, researchers from the department of Thomas Braun at the Max Planck Institute for Heart and Lung Research have investigated the molecular processes of protein degradation in heart muscle cells. Yvonne Eibach and Silke Kreher, both first authors of the study published in Science Advances, together with their research partners, discovered disturbances in the process that serves the disposal of defective or no longer needed proteins.

An international team of scientists, including researchers from Harvard University and the University of Zurich, analyzed clinical trial results 777 elderly Swiss adults to test the potential anti-aging benefits of supplements and exercise.

While there’s no perfect way to measure biological aging, the researchers used tools that help measure age-related decline in the cells and organs, including factors like brain health and heart health.

They looked at participants who underwent one of eight longevity treatments over three years, including exercising and supplementing omega-3s, vitamin D, or both.