Toggle light / dark theme

This is probably a repost, but cool anyways.

CSHL Professor Lloyd Trotman and his team have discovered that menadione kills prostate cancer cells in mice by depleting a lipid known as PIP. Their findings set the stage for pilot studies in human prostate cancer patients and point to a potential treatment target for myotubular myopathy, a rare and fatal disease diagnosed in infant boys.


Prostate cancer is a quiet killer. In most men, it’s treatable. However, in some cases, it resists all known therapies and turns extremely deadly. A new discovery at Cold Spring Harbor Laboratory (CSHL) points to a potentially groundbreaking solution. CSHL Professor Lloyd Trotman’s lab has found that the pro-oxidant supplement menadione slows prostate cancer progression in mice. The supplement is a precursor to vitamin K, commonly found in leafy greens. The story begins more than two decades ago.

Topical ABT-263 effectively reduced several senescence markers in aged skin, preparing it for improved wound healing. Researchers from Boston University’s School of Medicine have identified a promising treatment that could improve wound healing in aging skin. Their study, published in the journal Aging, reveals that the drug ABT-263 can significantly accelerate skin repair by eliminating old, damaged cells known as senescent cells.

From the press release.

Cyclarity Therapeutics is pleased to announce regulatory approval to begin its first-in-human clinical trial. The trial will be conducted at CMAX, one of Australia’s leading clinical research centers, in partnership with Monash University. This effort will be led by Dr. Stephen Nicholls of the Victorian Heart Institute (VHI), a distinguished leader in cardiovascular medicine. In addition to a traditional SAD/MAD phase 1 trial, the authorization includes an allowance to enroll 12 patients with Acute Coronary Syndrome (ACS) to assess the safety of UDP-003 in individuals with plaque buildup, as well as to explore anecdotal evidence of efficacy. This represents a critical first step in evaluating the potential impact of our therapy in a population with high unmet need.

The distinct population of endothelial cells that line blood vessels in the insulin-producing “islets” of the human pancreas have been notoriously difficult to study, but Weill Cornell Medicine investigators have now succeeded in comprehensively detailing the unique characteristics of these cells.

The resulting atlas advances basic research on the biology of the pancreas and could lead to new treatment strategies for diabetes and other pancreatic diseases.

In the study, published in Nature Communications, the researchers devised a set of methods for rapidly isolating and profiling endothelial cells called ISECs (islet-specific endothelial cells) from donor pancreases.

Vimentin is a type III intermediate filament (IF) protein normally expressed in cells that develop into connective tissue, blood vessels, and lymphatic tissue (mesenchymal cells). Despite being widely studied, its role in tumor growth and progression remains unexplored.

A team of researchers at Queen Mary University of London have discovered how a small change in the vimentin protein can make more aggressive. The work is published in the journal eLife.

By modifying a specific amino acid cysteine to serine residue at position 328 in vimentin, they discovered that this mutation disrupted the protein’s interaction with the cell’s structural network. Remarkably, the mutated vimentin induced aggressive cancer-like behavior in breast cancer cells, including faster cell growth, migration, and invasion accompanied by reduced .

Harvard University and the Chinese University of Hong Kong researchers have developed a technique that increases the solubility of drug molecules by up to three orders of magnitude. This could be a breakthrough in drug formulation and delivery.

Over 60% of pharmaceutical drug candidates suffer from poor water solubility, which limits their bioavailability and therapeutic viability. Conventional techniques such as particle-size reduction, solid dispersion, lipid-based systems, and mesoporous confinement often have drug-specific limitations, can be costly to implement, and are prone to stability issues.

The newly developed approach addresses these issues by leveraging the competitive adsorption mechanism of drug molecules and water on engineered silica surfaces. It avoids chemical modification of drug molecules or using additional solubilizing agents to achieve solubility, potentially replacing multiple drug delivery technologies.

A joint research team from the LKS Faculty of Medicine (HKUMed) and the Faculty of Science at the University of Hong Kong has uncovered an unexpected interaction between chemotherapeutic agents and a crucial efficacy marker.

Sylvain Lesné, a neuroscientist accused of image manipulation in a seminal Alzheimer’s disease paper in, resigned last week from his tenured professorship at the University of Minnesota Twin Cities (UMN). The move follows a 2.5-year investigation in which the university found problems with several other papers on which Lesné is an author. The study has already been pulled, but the school has asked that four more of Lesné’s papers be retracted.

The resignation, effective 1 March, was first reported by the. Lesné did not respond to a request for comment. UMN spokesperson Jake Ricker said, “The university has identified data integrity concerns impacting several publications and has been in touch with those journals to recommend retraction of the publications, where appropriate.”

As a postdoc, Lesné worked in the lab of neuroscientist Karen Ashe. In 2006, they published a study in that seemed to show a cause-effect relationship between a protein—amyloid-beta *56—and memory loss in rats. Those symptoms seemed to resemble the memory problems that afflict Alzheimer’s patients.