New study from Emory and Baylor shows psilocin delays aging in human cells and extends lifespan in mice by supporting DNA repair, SIRT1, and telomeres.

In a new study, researchers show, for the first time, that photoacoustic microscopy can image stents through skin, potentially offering a safer, easier way to monitor these life-saving devices. Each year, around 2 million people in the U.S. are implanted with a stent to improve blood flow in narrowed or blocked arteries.
“It is critical to monitor stents for problems such as fractures or improper positioning, but conventionally used techniques require invasive procedures or radiation exposure,” said co-lead researcher Myeongsu Seong from Xi’an Jiaotong-Liverpool University in China. “This inspired us to test the potential of using photoacoustic imaging for monitoring stents through the skin.”
In the journal Optics Letters, the researchers show that photoacoustic microscopy can be used to visualize stents covered with mouse skin under various clinically relevant conditions, including simulated damage and plaque buildup.
In the same vein as weather forecast models that predict developing storms, researchers have now developed a method to predict the cell activity in tissues over time. The new software combines genomics technologies with computational modeling to predict cell changes in behavior, such as communication between cells that could cause cancer cells to flourish.
A research team in Korea has experimentally demonstrated, for the first time in the world, a nonlinear wave phenomenon that changes its frequency—either rising or falling—depending on which direction the waves come from.
Much like Janus, the Roman god with two faces looking in opposite directions, the system exhibits different responses depending on the direction of the incoming wave. This groundbreaking work opens new horizons for technologies ranging from medical ultrasound imaging to advanced noise control.
The joint research team, led by Professor Junsuk Rho of POSTECH’s Departments of Mechanical Engineering, Chemical Engineering, Electrical Engineering, and the Graduate School of Convergence Science and Technology, along with Dr. Yeongtae Jang, Ph.D. candidate Beomseok Oh, and Professor Eunho Kim of Jeonbuk National University, has experimentally demonstrated a phenomenon of bidirectional asymmetric frequency conversion within a granular phononic crystal system.
Ancient bacteria that have evolved to become integral to our cells—converting nutrients from food into energy—may also contribute to neurologic disorders, such as spinal muscular atrophy (SMA) and autism, according to research in the lab of Yongchao Ma, Ph.D., from Ann & Robert H. Lurie Children’s Hospital of Chicago.
Called mitochondria, these mysterious parts of the cell have even retained their own DNA. Traditionally they are known as the “powerhouse of the cell.”
In recent years, however, mitochondria have been recognized as regulating many functions, including gene expression and how cells communicate. Dr. Ma’s research focuses on how dysregulation by mitochondria may lead to motor neuron degeneration in SMA or improper neuron connections in autism.
Using mathematical analysis of patterns of human and animal cell behavior, scientists say they have developed a computer program that mimics the behavior of such cells in any part of the body. Led by investigators at Indiana University, Johns Hopkins Medicine, the University of Maryland School of Medicine and Oregon Health & Science University, the new work was designed to advance ways of testing and predicting biological processes, drug responses and other cell dynamics before undertaking more costly experiments with live cells.
With further work on the program, the researchers say it could eventually serve as a “digital twin” for testing any drug’s effect on cancer or other conditions, gene environment interactions during brain development, or any number of dynamic cellular molecular processes in people where such studies are not possible.
The new study and examples of cell simulations are described online July 25 in the journal Cell.