Toggle light / dark theme

A multidisciplinary clinical team led by Professor Bernat Soria from the Institute of Bioengineering at the Miguel Hernández University of Elche (UMH, Spain) has developed a new method to deliver cell therapies in patients on extracorporeal membrane oxygenation (ECMO), a life support system used in cases of severe lung failure.

The advance has been published in Stem Cell Research & Therapy. The team has opted not to patent the technique in order to encourage its use in public health systems once further clinical testing is completed.

The method—named CIBA, for “Consecutive Intrabronchial Administration”—enables the delivery of stem-cell-based treatments directly into the alveoli of critically ill patients who cannot receive standard intravenous cell therapy due to the ECMO system’s constraints.

American composer Alvin Lucier was well-known for his experimental works that tested the boundaries of music and art. A longtime professor at Wesleyan University (before retiring in 2011), Alvin passed away in 2021 at the age of 90. However, that wasn’t the end of his lifelong musical odyssey.

Earlier this month, at the Art Gallery of Western Australia, a new art installation titled Revivification used Lucier’s “brain matter”—hooked up to an electrode mesh connected to twenty large brass plates—to create electrical signals that triggered a mallet to strike the varying plates, creating a kind of post-mortem musical piece. Conceptualized in collaboration with Lucier himself before his death, the artists solicited the help of researchers from Harvard Medical School, who grew a mini-brain from Lucier’s white blood cells. The team created stem cells from these white blood cells, and due to their pluripotency, the cells developed into cerebral organoids somewhat similar to developing human brains.

Physicists at Harvard have developed a powerful new laser-on-a-chip that emits bright pulses in the mid-infrared spectrum – an elusive and highly useful light range for detecting gases and enabling new spectroscopic tools.

The device, which packs capabilities of much larger systems into a tiny chip, doesn’t need any external components. It merges breakthrough photonic design with quantum cascade laser tech and could soon revolutionize environmental monitoring and medical diagnostics by detecting thousands of light frequencies in one go.

Breakthrough in compact mid-infrared laser technology.

Scientists have unveiled a new food source designed to sustain honey bee colonies indefinitely without natural pollen.

Published in the journal Proceedings of the Royal Society B, the research from Washington State University and APIX Biosciences NV in Wingene, Belgium, details successful trials where nutritionally stressed colonies, deployed for commercial crop pollination in Washington state, thrived on the new food source.

This innovation, which resembles the man-made diets fed to livestock and pets all their lives, contains all the nutrients bees need. It’s expected to become a potent strategy for combating the escalating rates of colony collapse and safeguarding global food supplies reliant on bee pollination.

A team of researchers at UCL and UCLH have identified the key brain regions that are essential for logical thinking and problem solving.

The findings, published in Brain, help to increase our understanding of how the human brain supports our ability to comprehend, draw conclusions, and deal with new and novel problems—otherwise known as reasoning skills.

To determine which are necessary for a certain ability, researchers study patients with brain lesions (an area of damage in the brain) caused by stroke or . This approach, known as “lesion-deficit mapping,” is the most powerful method for localizing function in the human brain.

The development and spread of antibiotic resistance represents one of the greatest threats to global health. To overcome these resistances, drugs with novel modes of action are urgently needed.

Researchers at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) have now uncovered the mode of action of a promising class of natural products—the chlorotonils. These molecules simultaneously target the bacterial cell membrane and the bacteria’s ability to produce proteins, enabling them to break through resistance. The team published its findings in Cell Chemical Biology.

The more frequently antibiotics are used, the faster pathogens evolve mechanisms to evade their effects. This leads to against which common antibiotics are no longer effective. To ensure that effective treatments for bacterial infections remain available in the future, antibiotics that target different bacterial structures than currently approved drugs are essential.