Toggle light / dark theme

The skin is the largest organ in the human body. It makes up around 15 percent of our body weight and protects us from pathogens, dehydration and temperature extremes. Skin diseases are therefore more than just unpleasant – they can quickly become dangerous for affected patients. Although conditions such as skin cancer, chronic wounds and autoimmune skin diseases are widespread, we often still don’t fully understand about why they develop and how we can treat them effectively.

To find answers to these questions, Empa researchers are working together with clinical partners on a model of human skin. The model will allow scientists to simulate skin diseases and thus better understand them. This is not a computer or plastic model. Rather, researchers from Empa’s Laboratory for Biomimetic Membranes and Textiles and its Laboratory for Biointerfaces aim to produce a living “artificial skin” that contains cells and emulates the layered and wrinkled structure of human skin. The project is part of the Swiss research initiative SKINTEGRITY.CH.

In order to recreate something as complex as skin, suitable building materials are needed. This is where Empa researchers have recently made progress: They have developed a hydrogel that meets the complex requirements while being easy to manufacture. The basis: gelatin from the skin of cold-water fish.

Ubiquinone, a metabolite critical to generating energy in cells, has long been thought to be the only mitochondrial electron transport chain carrier in mammals. Although other electron transporters have been identified in bacteria, nematodes and other organisms, evidence of their presence in mammals has remained elusive.

Thanks to new high-resolution mass spectrometry technology, Jessica Spinelli, Ph.D., assistant professor of molecular medicine, has identified rhodoquinone as another fundamental electron transporter in the mammalian electron transport chain. The research was recently published in Cell.

Because rhodoquinone allows mitochondria to function in a low oxygen environment, Dr. Spinelli research may have clinical potential for protecting cells from hypoxia.

A breakthrough by researchers at The University of Manchester sheds light on one of nature’s most elusive forces, with wide-reaching implications for medicine, energy, climate modeling and more. The researchers have developed a method to precisely measure the strength of hydrogen bonds in confined water systems, an advance that could transform our understanding of water’s role in biology, materials science, and technology.

The work, published in Nature Communications, introduces a fundamentally new way to think about one of nature’s most important but difficult-to-quantify interactions.

Hydrogen bonds are the invisible forces that hold water molecules together, giving water its unique properties, from high boiling point to , and enabling critical biological functions such as protein folding and DNA structure. Yet despite their significance, quantifying in complex or confined environments has long been a challenge.

Recent advancements in in-vitro gametogenesis (IVG) suggest that lab-grown eggs and sperm could become viable within the next decade. This technology holds the promise of revolutionizing fertility treatments, particularly for individuals facing infertility and same-sex couples desiring biological children. However, it also raises significant ethical and medical considerations that must be carefully addressed.

The Human Fertilisation and Embryology Authority (HFEA), the UK’s fertility regulator, has reported that the development of lab-grown gametes, known as in-vitro gametogenesis (IVG), may become a practical option within the next decade. This technology involves creating eggs and sperm from reprogrammed skin or stem cells, potentially transforming fertility treatments by removing age-related barriers and enabling same-sex couples to have biological children.

IVG represents a significant advancement in reproductive science. By generating gametes in the laboratory, scientists can overcome challenges associated with traditional fertility treatments. This approach could provide new avenues for individuals with infertility issues and offer same-sex couples the opportunity to have children genetically related to both partners.

Pancreatic cancer is one of the most aggressive cancers and has one of the lowest survival rates—only 10% after five years. One of the factors contributing to its aggressiveness is its tumor microenvironment, known as the stroma, which makes up the majority of the tumor mass and consists of a network of proteins and different non-tumor cells. Among these, fibroblasts play a key role, helping tumor cells to grow and increasing their resistance to drugs.

Now, a study led by researchers from the Hospital del Mar Research Institute, IIBB-CSIC-IDIBAPS, Mayo Clinic, Instituto de Biología y Medicina Experimental (CONICET, Argentina) and CaixaResearch Institute, has identified a new key factor contributing to this feature of : a previously unknown function of Galectin-1 protein inside the nuclei of fibroblasts.

This discovery, published in the journal PNAS, offers new insights into the role of these cells in the progression of pancreatic cancer.

Researchers at the University of Cologne and University Hospital Cologne have determined that the novel mRNA-based COVID-19 vaccines not only induce acquired immune responses such as antibody production, but also cause persistent epigenetic changes in innate immune cells.

The study, “Persistent epigenetic memory of SARS-CoV-2 mRNA vaccination in monocyte-derived macrophages,” led by Professor Dr. Jan Rybniker, who heads the Division of Infectious Diseases at University Hospital Cologne and is a principal investigator at the Center for Molecular Medicine Cologne (CMMC), and Dr. Robert Hänsel-Hertsch, principal investigator at the CMMC, was published in Molecular Systems Biology.

The immune system comprises two immunity strategies: the innate and the acquired (adaptive) immune system. The innate immune system provides general protection from pathogens and must react quickly. The adaptive immune system adapts to new pathogens and is highly specific in its response. Both systems work closely together.

A new high-tech implant has shown “promise” in fighting some of the deadliest forms of cancer.

The cancer-fighting device safely triggers “potent” immune responses against hard-to-treat cancers, including metastatic melanoma, and pancreatic and colorectal tumors, say American scientists.

A team of researchers from the Rice Biotech Launch Pad at Rice University in Houston developed the implantable “cytokine factory”

To ensure that information maintains a high quality and isn’t overwhelmed by noise, optical amplifiers are essential. The data transmission capacity of an optical communication system is largely determined by the amplifier’s bandwidth, which refers to the range of light wavelengths it can handle.

“The amplifiers currently used in optical communication systems have a bandwidth of approximately 30 nanometers. Our amplifier, however, boasts a bandwidth of 300 nanometers, enabling it to transmit ten times more data per second than those of existing systems,” explains Peter Andrekson, Professor of Photonics at Chalmers and lead author of the study published in Nature.


The rapidly increasing data traffic is placing ever greater demands on the capacity of communication systems. In an article published in the prestigious journal Nature, a research team from Chalmers University of Technology, in Sweden, introduces a new amplifier that enables the transmission of ten times more data per second than those of current fiber-optic systems. This amplifier, which fits on a small chip, holds significant potential for various critical laser systems, including those used in medical diagnostics and treatment.

The advancement of AI technology, the growing popularity of streaming services, and the proliferation of new smart devices are among the factors driving the expected doubling of data traffic by 2030. This surge is heightening the demand for communication systems capable of managing vast amounts of information.

Currently, optical communication systems are employed for the internet, telecommunications, and other data-intensive services. These systems utilise light to transmit information over long distances. The data is conveyed through laser pulses that travel at high speeds through optical fibers, which are composed of thin strands of glass.

Mitochondrial function relies on the precise targeting and import of cytosolic proteins into mitochondrial subcompartments. Most matrix-targeted proteins follow the presequence pathway, which directs precursor proteins across the outer mitochondrial membrane (OMM) via the Translocase of the Outer Membrane (TOM) complex and into the matrix or inner mitochondrial membrane (IMM) via the Translocase of the Inner Membrane 23 (TIM23) complex. While classical biochemical studies provided detailed mechanistic insights into the composition and mechanism of the TIM23 complex, recent cryogenic-electron microscopy (cryo-EM) data challenge these established models and propose a revised model of translocation in which the TIM17 subunit acts as a ‘slide’ for precursor proteins, with Tim23 acting as a structural element. In this review, we summarize existing models, highlighting the questions and data needed to reconcile these perspectives, and enhance our understanding of TIM23 complex function.