Toggle light / dark theme

Computational models explore how regions of the visual cortex jointly represent visual information

Understanding how the human brain represents the information picked up by the senses is a longstanding objective of neuroscience and psychology studies. Most past studies focusing on the visual cortex, the network of regions in the brain’s outer layer known to process visual information, have focused on the contribution of individual regions, as opposed to their collective representation of visual stimuli.

Researchers at Freie Universität Berlin recently carried out a study aimed at shedding new light on how regions across the human visual cortex collectively encode and process visual information, by simulating their contribution using computational models. Their findings, published in Nature Human Behaviour, highlight specific rules that could govern the relations between these different regions of the visual cortex.

“Most of us take seeing for granted, but the process is surprisingly complex,” Alessandro Gifford, first author of the paper, told Medical Xpress. “When we look at the world, it’s not just our eyes doing the work—it’s our brain, specifically an area at the back called the visual cortex. Think of the visual cortex as a team of specialists. Each member of the team (or brain region) handles a different aspect of what we see—one might focus on shapes, another on motion, another on faces.”

New Chemistry Discovery Promises More Effective Cancer Drugs With Fewer Side Effects

Researchers discovered how to flip the structure of complex drug compounds using a simple reagent, offering a game-changing approach for making better medicines. For the first time, chemists have developed a novel method to manipulate a type of chemical compound that plays a crucial role in many

Cervical function in pregnancy and disease: new insights from single-cell analysis

The uterine cervix plays an essential role in regulating fertility, maintaining pregnancy, remodeling in preparation for parturition, and protecting the reproductive tract from infection. A compromise in cervical function contributes to adverse clinical outcomes. Understanding molecular events that drive the multifunctional and temporally defined roles of the cervix is necessary to effectively treat infertility, reproductive tract infections, preterm birth, labor dystocia, and cervical cancer. The application of single-cell technologies to study cervical pathophysiology, while in its infancy, underscores the potential of these approaches in developing clinically relevant biomarkers of disease and preventative therapies.

Cheap Daily Supplement Appears to Boost Brain Function in Older People

What’s good for your aging gut may also be good for your aging brain. The first study of its kind in twins found that taking daily protein and prebiotic supplements can improve scores on memory tests in people over the age of 60.

Published early last year, the findings are food for thought, especially as the same visual memory and learning test is used to detect early signs of Alzheimer’s disease.

The double-blinded trial involved two cheap plant fiber prebiotics that are available over the counter in numerous nations around the world.

Why some genes are more error-prone: Scientists uncover hidden rule in DNA transcription

Every living cell must interpret its genetic code—a sequence of chemical letters that governs countless cellular functions. A new study by researchers from the Center for Theoretical Biological Physics at Rice University has uncovered the mechanism by which the identity of the letters following a given nucleotide in DNA affects the likelihood of mistakes during transcription, the process by which DNA is copied into RNA. The discovery offers new insight into hidden factors that influence transcription accuracy.

The work is published in the journal Proceedings of the National Academy of Sciences.

The study was authored by Tripti Midha, Anatoly Kolomeisky and Oleg Igoshin. It shows why genetic sequences are not equally prone to errors. Instead, the identity of the two nucleotides immediately downstream of a site significantly alters the error rate during transcription. This discovery builds on prior insights by the same authors on enzymatic proofreading mechanisms, factoring in the effects of distinct kinetics for different nucleotide additions.

Peripheral nerve regeneration driven by hundreds of unknown RNA molecules

Unlike the brain and spinal cord, peripheral nerve cells, whose long extensions reach the skin and internal organs, are capable of regenerating after injury. This is why injuries to the central nervous system are considered irreversible, while damage to peripheral nerves can, in some cases, heal, even if it takes months or years. Despite decades of research, the mechanisms behind peripheral nerve regeneration remain only partially understood.

In a new study published in Cell, researchers from Prof. Michael (Mike) Fainzilber’s lab at the Weizmann Institute of Science discovered that a family of hundreds of RNA molecules with no known physiological function is essential to nerve .

Remarkably, the study showed that these molecules can stimulate growth not only in the peripheral nervous system of mice but also in their central nervous system. These findings could pave the way for new treatments for a variety of nerve injuries and neurodegenerative diseases.

Novel AI method sheds light on how enzyme linked to Alzheimer’s selects its targets

Researchers from DZNE, Ludwig-Maximilians-Universität München (LMU), and Technical University of Munich (TUM) have found that the enzyme “gamma-secretase”—implicated in Alzheimer’s disease and cancer—selects its reaction partners according to a complex scheme of molecular features.

Their study, published in Nature Communications, introduces a methodology that decodes the enzyme’s recognition logic by bridging biochemistry with explainable artificial intelligence (AI). This novel approach could help to better understand the role of in diseases and aid drug development.

Gamma-secretase is an enzyme belonging to the category of “proteases” that plays a key role in Alzheimer’s disease and cancer. It occurs in the membrane of numerous cells, including neurons, where—acting like a pair of scissors—it cleaves other membrane-bound proteins.

Robot performs 1st realistic surgery without human help

A robot trained on videos of surgeries performed a lengthy phase of a gallbladder removal without human help. The robot operated for the first time on a lifelike patient, and during the operation, responded to and learned from voice commands from the team—like a novice surgeon working with a mentor.

The robot performed unflappably across trials and with the expertise of a skilled human surgeon, even during unexpected scenarios typical in real life medical emergencies.

The federally-funded work, led by Johns Hopkins University researchers, is a transformative advancement in surgical robotics, where robots can perform with both mechanical precision and human-like adaptability and understanding.

“This advancement moves us from robots that can execute specific surgical tasks to robots that truly understand surgical procedures,” said medical roboticist Axel Krieger. “This is a critical distinction that brings us significantly closer to clinically viable autonomous surgical systems that can work in the messy, unpredictable reality of actual patient care.”