Toggle light / dark theme

The Hopf whole-brain model, based on structural connectivity, overcomes limitations of traditional structural or functional connectivity-focused methods by incorporating heterogeneity parameters, quantifying dynamic brain characteristics in healthy and diseased states. Traditional parameter fitting techniques lack precision, restricting broader use. To address this, we validated parameter fitting methods using simulated networks and synthetic models, introducing improvements such as individual-specific initialization and optimized gradient descent, which reduced individual data loss. We also developed an approximate loss function and gradient adjustment mechanism, enhancing parameter fitting accuracy and stability.

An AI tool has made a step forward in translating the language proteins use to dictate whether they form sticky clumps similar to those linked to Alzheimer’s disease and around fifty other types of human disease. In a departure from typical “black-box” AI models, the new tool, CANYA, was designed to be able to explain its decisions, revealing the specific chemical patterns that drive or prevent harmful protein folding.

The discovery, published in the journal Science Advances, was possible thanks to the largest-ever dataset on protein aggregation created to date. The study gives new insights about the molecular mechanisms underpinning sticky proteins, which are linked to diseases affecting half a billion people worldwide.

Protein clumping, or amyloid aggregation, is a health hazard that disrupts normal cell function. When certain patches in proteins stick to each other, proteins grow into dense fibrous masses that have pathological consequences.

Lightweight lithium metal is a heavy-hitting critical mineral, serving as the key ingredient in the rechargeable batteries that power phones, laptops, electric vehicles and more. As ubiquitous as lithium is in modern technology, extracting the metal is complex and expensive. A new method, developed by researchers at Penn State and recently granted patent rights, enables high-efficiency lithium extraction—in minutes, not hours—using low temperatures and simple water-based leaching.

“Lithium powers the technologies that define our modern lives—from smartphones to electric vehicles—and has applications in grid energy storage, ceramics, glass, lubricants, and even medical and nuclear technologies,” said Mohammad Rezaee, the Centennial Career Development Professor in Mining Engineering at Penn State, who led the team that published their approach in Chemical Engineering Journal.

“But its extraction must also be environmentally responsible. Our research shows that we can extract lithium, and other , more efficiently while drastically reducing energy use, greenhouse gas emissions and waste that’s difficult to manage or dispose of.”

Understanding synapse loss in Alzheimer’s disease has been hampered by a lack of human model systems. Here, the authors show that manipulation of physiological or pathological Aβ has differing effects on synapses in live human brain slice cultures.

A new study involving over 700 older adults suggests that taking one gram of omega-3 daily may help slow biological aging, with effects visible in molecular markers known as epigenetic clocks.

When combined with vitamin D and regular exercise, the anti-aging benefits became even more pronounced, lowering the risks of frailty and cancer as well.

Omega-3 linked to slower aging in humans.

Recently, Prof. Si Longlong’s team from the Shenzhen Institutes of Advanced Technology of the Chinese Academy of Sciences constructed a library of live-attenuated influenza A vaccines that utilize diverse E3 ubiquitin ligases to degrade viral proteins and achieve virus attenuation, and developed the next-generation proteolysis-targeting (PROTAR) strategy, PROTAR 2.0.

The studies were published in Nature Microbiology and Nature Chemical Biology, respectively, and expand on the PROTAR live attenuated vaccine technology that was initially introduced by the team’s study published in Nature Biotechnology in 2022.

To prevent influenza, vaccination is widely considered as the most effective way. Currently, the majority of licensed influenza vaccines are inactivated (IIV) and cold-adapted live-attenuated influenza vaccine (CAIV). However, traditional vaccine strategies can result in the loss or incomplete matching of natural antigens from circulating influenza strains, potentially leading to reduced vaccine efficacy.

In a comprehensive Genomic Press perspective article published today, researchers from Fudan University and Shanghai University of Traditional Chinese Medicine have highlighted remarkable advances in the development of positron emission tomography (PET) tracers capable of visualizing α-synuclein aggregates in the brains of patients with Parkinson’s disease and related disorders.

The abnormal accumulation of α-synuclein protein is a defining pathological feature of several neurodegenerative conditions collectively known as synucleinopathies, including Parkinson’s disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB). Until recently, confirming the presence of these protein aggregates required post-mortem examination, severely limiting early diagnosis and treatment monitoring capabilities.

“The ability to visualize these protein aggregates in living patients represents a significant leap forward in neurodegenerative disease research,” explains Dr. Fang Xie, corresponding author and researcher at the Department of Nuclear Medicine & PET Center at Huashan Hospital, Fudan University.