Toggle light / dark theme

A new USC-led study has found that mild cognitive impairment is associated with blood vessel dysfunction in the brain’s temporal lobes, the region responsible for memory.

This vascular issue was observed in individuals both with and without amyloid buildup in the brain, indicating that microvascular dysfunction could serve as an early biomarker for dementia and a potential target for treatment.

The study, conducted by researchers from several universities, was published in the journal Neurology.

Scientists have built an artificial motor capable of mimicking the natural mechanisms that power life. Just like the proteins in our muscles, which convert chemical energy into power to allow us to perform daily tasks, these tiny rotary motors use chemical energy to generate force, store energy, and perform tasks in a similar way.

The finding, from The University of Manchester and the University of Strasbourg and published in the journal Nature, provides new insights into the fundamental processes that drive life at the and could open doors for applications in medicine, , and nanotechnology.

“Biology uses chemically powered molecular machines for every , such as transporting chemicals around the cell, information processing or reproduction. By replicating nature at the nanoscale level, we can design entirely new materials with highly specific functions that don’t exist in the natural world. Building this outside of nature also gives us greater simplicity and control over its functions and uses,” said Professor David Leigh, lead researcher from The University of Manchester.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Existing computer systems have separate data processing and storage devices, making them inefficient for processing complex data like AI. A KAIST research team has developed a memristor-based integrated system similar to the way our brain processes information. It is now ready for application in various devices, including smart security cameras, allowing them to recognize suspicious activity immediately without having to rely on remote cloud servers, and medical devices with which it can help analyze health data in real time.

The joint research team of Professor Shinhyun Choi and Professor Young-Gyu Yoon of the School of Electrical Engineering has developed the next-generation neuromorphic semiconductor-based ultra-small computing chip that can learn and correct errors on its own. The research is published in the journal Nature Electronics.

What is special about this computing chip is that it can learn and correct errors that occur due to non-ideal characteristics that were difficult to solve in existing neuromorphic devices. For example, when processing a , the chip learns to automatically separate a moving object from the background, and it becomes better at this task over time.

An international team of researchers has made significant progress in understanding how gene expression is regulated across the human genome. In a recent study, they conducted a comprehensive analysis of cis-regulatory elements (CREs)—DNA sequences that control gene transcription. This research provides valuable insights into how CREs drive cell-specific gene expression and how mutations in these regions can impact health and contribute to disease.

CREs, such as enhancers and promoters, play a critical role in determining when and where genes are activated or silenced. Although their importance is well known, analyzing their activity on a large scale has been a longstanding challenge.

“The human genome contains a myriad of CREs, and mutations in these regions are thought to play a major role in human diseases and evolution,” explained Dr. Fumitaka Inoue, one of the co-first authors of the study. “However, it has been very difficult to comprehensively quantify their activity across the genome.”

The complexity of the human brain—86 billion neurons strong with more than 100 trillion connections—enables abstract thinking, language acquisition, advanced reasoning and problem-solving, and the capacity for creativity and social interaction. Understanding how differences in brain signaling and dynamics produce unique cognition and behavior in individuals has long been a goal of neuroscience research, yet many phenomena remain unexplained.

A study from neuroscientists and engineers at Washington University in St. Louis addresses this knowledge gap with a new method to create personalized brain models, which offer insights into individual neural dynamics. Led by ShiNung Ching, associate professor in the Preston M. Green Department of Electrical & Systems Engineering in the McKelvey School of Engineering, and Todd Braver, professor in the Department of Psychological & Brain Sciences in Arts & Sciences, the work, published Jan. 17 in PNAS, introduces a novel framework that will allow the researchers to create individualized brain models based on detailed data from noninvasive, high-temporal resolution brain scans. Such personalized models have applications in research and clinical settings, where they could support advances in neuroscience and treatment of neurological conditions.

“This research is motivated by our need to understand person-to-person variation in brain dynamics,” said first author Matthew Singh, who conducted the research while a postdoctoral fellow with Braver and Ching at WashU and is now an assistant professor at the University of Illinois Urbana-Champaign. “We’re not explaining the full range of biophysical mechanisms at work in the , but we are able to shed light on why healthy individuals have different brain dynamics with our new modeling framework, which gives us insights into brain mechanics and testable predictions of brain phenomena.”

Link :-🔗: https://bit.ly/4jligRa.

Believe it or not, humans emit a faint glow all the time—it’s just invisible to the naked eye. This isn’t science fiction; it’s biology at work.

What’s behind this subtle light show, and why don’t we notice it? Let’s shed some light on this fascinating phenomenon.


+ Decoding the secrets of DNA, CRISPR gene editing allows scientists to target specific genes linked to aging. By modifying these genes, researchers aim to prevent conditions that come with aging. Envision a future where genetic risks for age-related diseases are minimized through precise DNA editing.

It is possible to regenerate cells using stem cells, which can turn into a variety of types. In recent trials, stem cells showed promise in regenerating aged tissues like cartilage. Scientists hope to develop therapies that might slow down physical decline and maintain vitality longer by using this potential.

Nanobots could someday be the future of healthcare by targeting damaged cells directly as they move through your bloodstream. Researchers are currently exploring how nanobots might repair cellular damage and improve overall health, potentially reversing some age-related effects at the cellular level.

As the protective ends of chromosomes, telomeres shorten over time. When they become too short, cells stop functioning. In laboratory studies, researchers have extended the lifespan of animals by using telomere extension techniques. Though still experimental, this research could pave the way for human applications in slowing aging.


Patients suffering from diseased and injured organs are often treated with transplanted organs, and this treatment has been in use for over 50 years. In 1955, the kidney became the first entire organ to be replaced in a human, when Murray transplanted this organ between identical twins. Several years later, Murray performed an allogeneic kidney transplant from a non-genetically identical patient into another. This transplant, which overcame the immunologic barrier, marked a new era in medicine and opened the door for use of transplantation as a means of therapy for different organ systems.

As modern medicine increases the human lifespan, the aging population grows, and the need for donor organs grows with it, because aging organs are generally more prone to failure. However, there is now a critical shortage of donor organs, and many patients in need of organs will die while waiting for transplants. In addition, even if an organ becomes available, rejection of organs is still a major problem in transplant patients despite improvements in the methods used for immunosuppression following the transplant procedure. Even if rejection does not occur, the need for lifelong use of immunosuppressive medications leads to a number of complications in these patients.

These problems have led physicians and scientists to look to new fields for alternatives to organ transplantation. In the 1960s, a natural evolution occurred in which researchers began to combine new devices and materials sciences with cell biology, and a new field that is now termed tissue engineering was born. As more scientists from different fields came together with the common goal of tissue replacement, the field of tissue engineering became more formally established. Tissue engineering is now defined as an interdisciplinary field which applies the principles of engineering and life sciences towards the development of biological substitutes that aim to maintain, restore or improve tissue function.

Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways – the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals – is a common feature of many neurological disorders and injury. However, functional axonal regeneration rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function.