Toggle light / dark theme

Supercomputer-developed AI learns the intricate language of biomolecules

Scientists at the University of Glasgow have harnessed a powerful supercomputer, normally used by astronomers and physicists to study the universe, to develop a new machine learning model which can help translate the language of proteins.

In a new study published in Nature Communications, the cross-disciplinary team developed a (LLM), called PLM-Interact, to better understand interactions, and even predict which mutations will impact how these crucial molecules “talk” to one another.

Early tests of PLM-interact, a protein language model (PLM), show that it outperforms competing models in understanding and predicting how proteins interact with one another. The team’s research demonstrates PLM-interact could help us better understand key areas of medical science, including the development of diseases such as cancer and .

Hair regrowth in just 20 days: Taiwanese researchers made a breakthrough hair serum that promises hair restoration within a month

In a breakthrough that could offer new hope to millions experiencing hair loss, researchers from National Taiwan University (NTU) have developed a rub-on serum that reportedly restores hair growth within 20 days. The innovative formulation, derived from natural fatty acids, has shown remarkable results in early laboratory tests and even in limited self-experiments by the study’s lead researcher.

The serum works by stimulating fat cells in the skin to regenerate hair follicles — a process inspired by the body’s natural response to irritation and injury. This mechanism, known as hypertrichosis, has long been linked to increased hair growth following skin damage or inflammation.

According to Professor Sung-Jan Lin, who led the study, the idea emerged from observing how minor skin irritation could trigger hair regeneration. ‘Skin injury not only induces tissue inflammation but also stimulates hair regeneration,’ Lin explained. ‘Our research shows that fatty acids can achieve similar effects safely and effectively.’


Researchers at National Taiwan University have developed a rub-on serum using natural fatty acids that reportedly stimulates hair growth within 20 days. Inspired by the body’s natural response to injury, the serum regenerates hair follicles by stimulating fat cells. The patented formulation has shown promising results in laboratory tests and self-experiments, with plans for human clinical trials.

Cardiometabolic and renal benefits of sodium–glucose cotransporter 2 inhibitors

In the past decade, the therapeutic scope of sodium–glucose cotransporter 2 (SGLT2) inhibitors has expanded beyond glycaemic regulation in the management of type 2 diabetes mellitus. In this Review, Lim et al. discuss data from clinical studies of SGLT2 inhibitors, demonstrating their multifaceted cardiovascular, metabolic and renal effects, and elucidate the diverse mechanisms underpinning these benefits.

New rare genetic disease affecting motor neuron and muscle control identified

An international research team, led by Shinghua Ding at the University of Missouri, has identified a previously unknown genetic disease that affects movement and muscle control.

The disease—called Mutation in NAMPT Axonopathy (MINA) syndrome—causes damage to motor neurons, the that send signals from the brain and spinal cord to muscles. It’s the result of a rare genetic mutation in a known as NAMPT, which helps the body’s cells make and use energy. When this protein doesn’t work as it should, cells can’t produce enough energy to stay healthy.

Over time, this lack of energy causes the cells to weaken and die, and leads to symptoms such as muscle weakness, loss of coordination and foot deformities—which can worsen over time. In severe cases, patients may eventually need a wheelchair.

Lung cancer cells in the brain form electrical connections with neurons that spur tumor growth

By Krista Conger

Small cell lung cancer often metastasizes to the brain. A Stanford Medicine-led study shows the cancer cells form synapses with neurons, and signaling across these synapses encourages tumor growth.

Combined HIV vaccines can act in concert to achieve diverse antibody priming

Researchers at La Jolla Institute for Immunology, Scripps Research, and the Ragon Institute of MGH, MIT, and Harvard report coordinated studies showing that several HIV germline-targeting immunogens can be delivered together to activate multiple broadly neutralizing antibody precursors.

HIV vaccine design faces the challenge that B cells capable of maturing into broadly neutralizing antibodies (bnAb) are exceptionally rare and poorly stimulated by standard antigens. Most immune responses concentrate on variable parts of the viral envelope rather than the conserved regions that would enable cross-strain protection from HIV.

Germline-targeting immunogens have been developed to engage those rare naive B cells directly, but until now, each construct was tested in isolation, leaving open whether several could be given at once without interference. In paired studies published in Science Immunology, investigators tested that question across two models using different vaccine formats.

Mitofissin Guides Mitochondrial Fission by Interacting with Drp1

Mitochondria, the primary energy-producing organelles in eukaryotic cells, power essential biosynthetic processes through oxidative phosphorylation [1]. These organelles are highly dynamic and continually undergo cycles of fusion and fission to support energy-demanding cellular activities such as proton pumping for gastric acid secretion [2]. These membrane remodeling events are regulated by evolutionarily conserved guanosine triphosphatases (GTPases) from the dynamin superfamily, with fusion at the outer and inner membranes mediated by MFN1/2 and OPA1, respectively, and fission occurring by Drp1 [3]. However, little is known about how Drp1 anchors to the mitochondrial outer membrane. Here, we report a previously uncharacterized protein, C3orf33, as a novel adaptor for Drp1 and designate it Mitofissin (MiSN) on the basis of its function in controlling mitochondrial fission. Our preliminary screen suggested that MiSN localizes to mitochondria. To visualize dynamic and fine MiSN localization, we transiently transfected U2OS cells to express green fluorescent protein (GFP)-MiSN, followed by real-time imaging using lattice structured illumination microscopy (Lattice SIM). As shown in Figure 1 A, MiSN colocalized with the mitochondrial dye MitoTracker. Careful examination of the zoomed-in image revealed that the MiSN signal was exterior to the MitoTracker (Figure 1 A, arrow). Further characterization of the cellular fractions revealed that MiSN was enriched in the mitochondrial fraction (Figure 1 B). Thus, we concluded that MiSN is a novel mitochondrial outer membrane protein.

OPEN IN VIEWER

Scientists smash record in stacking semiconductor transistors for large-area electronics

King Abdullah University of Science and Technology (KAUST; Saudi Arabia) researchers have set a record in microchip design, achieving the first six-stack hybrid CMOS (complementary metal-oxide semiconductor) for large-area electronics. With no other reported hybrid CMOS exceeding two stacks, the feat marks a new benchmark in integration density and efficiency, opening possibilities in electronic miniaturization and performance.

A paper detailing the team’s research appears in Nature Electronics.

Among microchip technologies, CMOS microchips are found in nearly all electronics, from phones and televisions to satellites and medical devices. Compared with conventional silicon chips, hybrid CMOS microchips hold greater promise for large-area electronics. Electronic miniaturization is crucial for flexible electronics, smart health, and the Internet of Things, but current design approaches are reaching their limits.

Engineers create bioelectronic hydrogels to monitor activity in the body

Wearable or implantable devices to monitor biological activities, such as heart rate, are useful, but they are typically made of metals, silicon, plastic and glass and must be surgically implanted. A research team in the McKelvey School of Engineering at Washington University in St. Louis is developing bioelectronic hydrogels that could one day replace existing devices and have much more flexibility.

Alexandra Rutz, an assistant professor of biomedical engineering, and Anna Goestenkors, a fifth-year doctoral student in Rutz’s lab, created novel granular hydrogels. They are made of microparticles that could be injected into the body, spread over tissues or used to encapsulate cells and tissue and also to monitor and stimulate biological activity. Results of their research were published Oct. 8 in the journal Small.

The microparticles are spherical hydrogels made from the conducting polymer known as PEDOT: PSS. When packed tightly, they are similar to wet sand or paste: They hold as a solid with micropores, but they can also be 3D printed or spread into different shapes while maintaining their structure or redistributed into individual microparticles when placed in liquid.

/* */