Toggle light / dark theme

It’s a mission that is less a nostalgic yearning for a prehistoric past than it is a solution to combat climate change, the company’s founders have said. By reintroducing mammoths to Arctic environments, they hope to rejuvenate grasslands and reduce permafrost thaw—a major source of methane emissions.

The potential ripple effects of such an ecological intervention have raised profound ethical and scientific questions but have nonetheless captivated researchers, investors and the public alike.

Colossal Bioscience’s approach to de-extinction is rooted in cutting-edge advances in genetic engineering and synthetic biology.

New research from the Academy of Military Medical Sciences in Beijing has uncovered a rather intriguing finding: natural melanin nanozymes (NMNs) derived from octopus ink may potentially slow ageing, protect against neurodegenerative diseases, and extend lifespan. Published in ACS Omega, the study reveals how these nanozymes work at the cellular level to mitigate oxidative stress, improve gut health, and enhance brain function, offering a new frontier in anti-ageing and neurological research.

What are Melanin Nanozymes?

Melanin, best known as the pigment responsible for skin and hair colour, has also been recognized for its potent antioxidant properties. Nanozymes created from natural melanin, like those extracted from octopus ink, mimic the activity of antioxidant enzymes such as superoxide dismutase (SOD). These nanozymes neutralize free radicals, reduce oxidative stress, and improve cellular health—processes that are critical in mitigating ageing and the onset of neurodegenerative diseases.

Daniel Dennett might be closer to truth on consciousness.


Full Episode: https://www.youtube.com/watch?v=kMxTS7eKkNM
Title: “Michael Levin: What Is The Field Of Diverse Intelligence (DI)? All Possible Intelligent Agents”

CONNECT:

Synthetic Biology is on the cusp of revolutionizing biomedicine.
at NextMed Health 2023 (http://NextMedHealth.com)

Andrew Hessel is chairman of Project-write, and Author of The Genesis Machine, Our Quest to Rewrite Life in the Age of Synthetic Biology.

More about Andrew Hessel: https://www.nextmed.health/bio-andrewhessel.

NextMed Health is a unique platform and community focused on the conversations. Join us at http://NextMed.Health/join

Genetic engineering is a beacon of hope. It promises eternal life, curing diseases and feeding the growing world population. The possibilities are boundless. The invention is not that old. But their pace is rapid. Life without genetic engineering will no longer exist. We are at the beginning of a new evolution.

The Silent Front (Extra Long Documentary) — • The Silent Front: Spies and Secrets o…


Welcome to the official Get.factual youtube channel! 🌍

We are a documentary streaming channel covering history, science, technology, and nature. Explore worlds distant, forgotten, and unknown; from the depths of ocean trenches to the far reaches of the cosmos.

Bolstered by Silicon Valley investment, scientists are making such rapid progress that lab-grown human eggs and sperm could be a reality within a decade, a meeting of the Human Fertilisation and Embryology Authority board heard last week.

In-vitro gametes (IVGs), eggs or sperm that are created in the lab from genetically reprogrammed skin or stem cells, are viewed as the holy grail of fertility research.

The technology promises to remove age barriers to conception and could pave the way for same-sex couples to have biological children together. It also poses unprecedented medical and ethical risks, which the HFEA now believes need to be considered in a proposed overhaul of fertility laws.

Researchers at the Technical University of Darmstadt and the Helmholtz Center Dresden-Rossendorf have developed flexible robot wings that are moved by magnetic fields. Inspired by the efficiency and adaptability of the wings of the monarch butterfly, they enable precise movements without electronics or batteries.

This bio-inspired development could fundamentally change , rescue operations and biomedical applications.

Monarch butterflies are known for their outstanding endurance and adaptability. Every year, they cover thousands of kilometers on their migrations between Canada and Mexico. The key to this feat lies in their unique wings, which allow the insects to fly energy-efficiently through a combination of active movement and passive bending.

Participants underwent fMRI while completing a monetary incentive delay task. This task is commonly used to assess reward system activation, as it separates the anticipation of a reward from the receipt of the reward. During the task, participants viewed visual cues signaling whether they could win money or not. They were then required to press a button quickly in response to a target, with feedback indicating whether they had succeeded in earning the reward.

The study focused on two key brain regions: the ventral striatum, which is involved in reward anticipation, and the orbitofrontal cortex, which processes reward outcomes. Psychological resilience was measured using the Connor-Davidson Resilience Scale, while PTSD severity was assessed with the Clinician-Administered PTSD Scale. Metabolic syndrome was diagnosed based on established clinical criteria, including elevated blood pressure, abnormal cholesterol or triglyceride levels, elevated blood sugar, and increased waist circumference.

The researchers observed distinct patterns of reward system activation in individuals with PTSD, influenced by the severity of depressive symptoms. Among PTSD participants with lower depression severity, activation in the ventral striatum during reward anticipation was reduced, while activation in the orbitofrontal cortex during reward outcomes was heightened.

When 3D printing was first introduced in 1985, it marked a major turning point for the manufacturing industry. In addition to being cheaper than traditional manufacturing technologies, it also promised the ability to customize designs and make prototypes on demand. While its technology is still considered relatively new, there has been an accelerating demand for 3D printing methods across sectors in the past decade, ranging from aerospace and defense to medicine.

Yet, Associate Professor Pablo Valdivia y Alvarado from the Singapore University of Technology and Design (SUTD) believes that there are still ways to go before 3D printing can achieve its full potential. In traditional 3D printing, a nozzle is used to print the material layer by layer, and the path that the nozzle takes is known as the toolpath.

However, layer-by-layer printing is incompatible for use with materials like silicone, epoxies, and urethanes that are slow-curing and take more time to harden. These types of materials are often used to create soft mechanical metamaterials which, in turn, are used for lightweight, nature-inspired structures, such as lattices and web structures. Deposition-based processes in 3D printing, such as direct ink writing, would be able to work with these materials to create such structures, but these suffer from non-optimized toolpaths.