Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Human intestine shows rapid evolutionary changes compared to other mammals

Research from an international team finds that the human gut is a site of rapid change, with recent and important deviations from other mammals, including our closest living relative, the chimpanzee.

Led by Gray Camp, Ph.D., of Roche Innovation Center in Basel, Switzerland; Jason Spence, Ph.D., of the University of Michigan and Craig Lowe, Ph.D., of Duke University, the team used to create human, chimp and mouse intestinal organoids—tiny models of the intestine that offer an unprecedented glimpse into the development of the small intestine.

The work was published in the journal Science.

Scientists map the genes behind diet and dementia risk

Concordance was high between imputed and sequenced APOE genotypes. Moreover, the researchers replicated known GWAS associations with diet-related biomarkers.

The authors also noted several limitations to provide context for future research. These include that the study population was predominantly of European ancestry, which may limit the generalizability of findings, and that the specific participant criteria (e.g., overweight, family history of dementia) mean the resource is not representative of the general population. They also advise that potential batch effects from specimen type and study site should be accounted for in future analyses.

This genetic resource enables analyses of genetic contributions to variability in cognitive responses to the MIND diet, supporting integrative analysis with other data types to delineate underlying biological mechanisms. The data will be made available to other researchers via The National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS).

New work achieves a pure quantum state without the need for cooling

Three nano-glass spheres cling to one another. They form a tower-like cluster, similar to when you pile three scoops of ice cream on top of one another—only much smaller. The diameter of the nano cluster is ten times smaller than that of a human hair.

With the help of an optical device and , researchers at ETH Zurich have succeeded in keeping such objects almost completely motionless in levitation. This is significant when it comes to the future development of quantum sensors, which, together with quantum computers, constitute the most promising applications of quantum research.

The team’s work appears in Nature Physics.

Researchers discover universal rules of quantum entanglement across all dimensions

A team of theoretical researchers used thermal effective theory to demonstrate that quantum entanglement follows universal rules across all dimensions. Their study was published online in Physical Review Letters.

“This study is the first example of applying thermal effective theory to quantum information. The results of this study demonstrate the usefulness of this approach, and we hope to further develop this approach to gain a deeper understanding of quantum structures,” said lead author and Kyushu University Institute for Advanced Study Associate Professor Yuya Kusuki.

In , two particles that are far apart behave independently. However, in , two particles can exhibit strong correlations regardless of the distance between them. This quantum correlation is known as quantum entanglement.

Scientists develop method to optimize delivery of mRNA to cells

Researchers have developed a simple yet highly effective method for delivering mRNA to target cells, opening up new possibilities for future non-vaccine mRNA medicines for a broad range of diseases.

The Monash University study, published in Nature Nanotechnology, is a significant development in how mRNA is precisely delivered to cells to maximize efficacy and minimize off-target effects—vital components for future mRNA medicines as they continue to evolve.

Led by the Monash Institute of Pharmaceutical Scientists (MIPS), the interdisciplinary team of researchers used advanced technologies coupled with preclinical studies to produce a highly versatile method that captures and attaches antibodies to the surface of mRNA-loaded while the antibodies are in their optimal orientation, thus enhancing the mRNA’s effectiveness and reducing side effects by making sure it only reaches its target destination.

/* */