Toggle light / dark theme

Using the James Webb Space Telescope (JWST), astronomers have observed enigmatic rings in the planetary nebula NGC 1,514, visible in the mid-infrared band. Results of the new observations, published Feb. 28 on the arXiv pre-print server, shed more light on the properties and nature of these rings.

Planetary nebulae (PNe) are expanding shells of gas and dust that have been ejected from a star during the process of its evolution from a into a red giant or white dwarf. They are relatively rare, but are important for astronomers studying the chemical evolution of stars and galaxies.

NGC 1,514 (also known as Crystal Ball Nebula) is a large and complex elliptical planetary at a distance of about 1,500 light years away. It originated from a designated HD 281679. The bright, visible component of the system is a giant star of spectral type A0III, while the nebula-generating companion is now a hot, sub-luminous O-type star.

National Institutes of Health researchers have mapped how individual neurons in the primary somatosensory cortex receive brain-wide presynaptic inputs that encode behavioral states, refining our understanding of cortical activity.

Neurons in the primary somatosensory cortex process different types of sensory information and exhibit distinct activity patterns, yet the cause of these differences has remained unclear. Previous research emphasized the role of motor cortical regions in movement-related processing, but also recognized that the thalamus plays a role beyond sensory relay.

Using high-resolution single-cell mapping to trace , the team revealed that thalamic input is the primary driver for movement-correlated neurons, while motor cortical input plays a smaller role.

A recent study by the Hector Institute for Translational Brain Research (HITBR) at the Central Institute of Mental Health (CIMH) in Mannheim provides the first detailed cellular insights into how psilocin, the active ingredient in magic mushrooms, promotes the growth and networking of human nerve cells.

These findings complement clinical studies on the treatment of mental disorders and could contribute to a better understanding of the neurobiological mechanisms behind the therapeutic effect of psilocybin.

Psilocybin is the well-known in so-called magic mushrooms, which is converted in the body to psilocin—the compound that ultimately unleashes the psychoactive effect. The Mannheim research team worked directly with psilocin to investigate the neurobiological effects.

Ask almost any physicist what the most frustrating problem is in modern-day physics, and they will likely say the discrepancy between general relativity and quantum mechanics. That discrepancy has been a thorn in the side of the physics community for decades.

While there has been some progress on potential theories that could rectify the two, there has been scant experimental evidence to support those theories. That is where Selim Shahriar from Northwestern University, Evanston, comes in. He plans to work on a concept called the Space-borne Ultra-Precise Measurement of the Equivalent Principle Signature of Quantum Gravity (SUPREME-GQ), which he hopes will help collect some accurate experimental data on the subject once and for all.

To put it bluntly, the experiment is complicated. At its heart, it uses a space-based platform carrying a quantum-entangled sensor and some precise positioning systems. But understanding why it is useful to test quantum gravity first requires some explanation. Let’s first look at one of the most famous tenets of General Relativity—the Equivalence Principle.

Researchers from the University of Science and Technology of China (USTC) have unveiled a planar optical device that significantly enhances the capabilities of dark-field microscopy, achieving super-resolution imaging beyond the diffraction limit. The work was led by Prof. Zhang Douguo and has been published in the Proceedings of the National Academy of Sciences.

Dark-field is a powerful technique used to visualize unstained samples by illuminating them with light at oblique angles, resulting in high-contrast images of weakly scattering objects. However, traditional dark-field microscopy is limited by the diffraction barrier and often requires complex, bulky setups with precise alignment. Super-resolution imaging techniques, which can overcome this barrier, are typically expensive and difficult to operate. The need for a simpler, more accessible solution has long been a challenge in the field.

The study introduces a planar photonic device that integrates a scattering layer, a one-dimensional photonic crystal (1DPC), and a metallic film to generate dark-field speckle patterns. This compact device can be easily integrated into conventional microscopes, eliminating the need for complex optical systems or precise alignment.

At ultracold temperatures, interatomic collisions are relatively simple, and their outcome can be controlled using a magnetic field. However, research by scientists led by Prof. Michal Tomza from the Faculty of Physics of the University of Warsaw and Prof. Roee Ozeri from the Weizmann Institute of Science shows that this is also possible at higher temperatures. The scientists published their observations in the journal Science Advances.

Near absolute zero, interatomic collisions show simple behavior, and researchers can control and alter their effects. As the temperature increases, so does the , which radically complicates the collision mechanism. As a result, controlling the collisions becomes difficult. At least that is what has been thought so far.

Electronic devices rely on materials whose electrical properties change with temperature, making them less stable in extreme conditions. A discovery by McGill University researchers that challenges conventional wisdom in physics suggests that bismuth, a metal, could serve as the foundation for highly stable electronic components.

The researchers observed a mysterious electrical effect in ultra-thin that remains unchanged across a wide temperature range, from near absolute zero (−273°C) to room temperature.

“If we can harness this, it could become important for green electronics,” said Guillaume Gervais, a professor of physics at McGill and co-author of the study.

A research team led by Prof. Hu Weijin from the Institute of Metal Research (IMR) of the Chinese Academy of Sciences has discovered that single-domain ferroelectric thin films can be efficiently achieved by simply elevating the growth temperature.

Their findings, published in Advanced Functional Materials, offer a straightforward alternative to conventional complex fabrication methods, with significant implications for ferroelectric device performance.

Ferroelectric materials naturally form polydomain structures to minimize electrostatic energy. Nevertheless, single-domain can be achieved through precise control of interfacial atomic layers or strain gradients. The quest for a simple method to obtain a single-domain state and its impact on ferroelectric device performance are of great interest.

Phase transitions, like water freezing into ice, are a familiar part of our world. But in quantum systems, they can behave even more dramatically, with quantum properties such as Heisenberg uncertainty playing a central role. Furthermore, spurious effects can cause the systems to lose, or dissipate, energy to the environment. When they happen, these “dissipative phase transitions” (DPTs) push quantum systems into new states.

There are different types or “orders” of DPTs. First-order DPTs are like flipping a switch, causing abrupt jumps between states. Second-order DPTs are smoother but still transformative, changing one of the system’s global features, known as symmetry, in subtle yet profound ways.

DPTs are key to understanding how quantum systems behave in non-equilibrium conditions, where arguments based on thermodynamics often fail to provide answers. Beyond pure curiosity, this has practical implications for building more robust quantum computers and sensors. For example, second-order DPTs could enhance quantum information storage, while first-order DPTs reveal important mechanisms of system stability and control.

Many biologically important molecules change shape when stimulated by UV radiation. Although this property can also be found in some drugs, it is not yet well understood. Using an innovative technique, an international team involving researchers from Goethe University Frankfurt, the European XFEL in Schenefeld and the Deutschen Elektronen-Synchrotron DESY in Hamburg has elucidated this ultra-fast process, and made it visible in slow motion, with the help of X-ray light. The method opens up exciting new ways of analyzing many other molecules.

The study is published in the journal Nature Communications.

“We investigated the molecule 2-thiouracil, which belongs to a group of pharmaceutically active substances based on certain DNA building blocks, the nucleobases,” says the study’s last author Markus Gühr, the head of DESY’s free-electron laser FLASH and Professor of Chemistry at University of Hamburg. 2-thiouracil and its chemically related active substances have a sulfur atom, which gives the molecules its unusual, medically relevant properties.