Researchers are continually looking for new ways to hack the cellular machinery of microbes like yeast and bacteria to make products that are useful for humans and society. In a new proof-of-concept study, a team from the Carl R. Woese Institute for Genomic Biology showed they can expand the biosynthetic capabilities of these microbes by using light to help access new types of chemical transformations.
The paper, published in Nature Catalysis, demonstrates how the bacteria Escherichia coli can be engineered to produce these new molecules in vivo, using light-driven enzymatic reactions. This framework sets the foundation for future development in the emerging field of photobiocatalysis.
“Photobiocatalysis is basically light-activated catalysis by enzymes. Without light, the target enzyme cannot catalyze a reaction. When light is added, the target enzyme will be activated,” said Huimin Zhao (BSD leader/CAMBERS/CGD/MMG), Steven L. Miller Chair of Chemical and Biomolecular Engineering. “We have published many papers showing that it is possible to combine photocatalysis with enzyme catalysis to create a new class of photoenzymes. These artificial photoenzymes can catalyze selective reactions that cannot be achieved by natural enzymes and are also very difficult, or sometimes even not possible, with chemical catalysis.”









