Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Nonmydriatic Ocular Fundus Imaging in Consecutive Patients With Headache in an Emergency Department

In this quality improvement project, nonmydriatic ocular fundus imaging enabled prompt and accurate rule-out of papilledema in patients with headaches presenting to the emergency department and facilitated rapid and reliable examination of the ocular fundus.


Background and Objectives.

Jensen Huang says relentless negativity around AI is hurting society and has “done a lot of damage”

Huang made his feelings about AI skeptics, haters, and doom-mongers clear on a recent episode of the No Priors podcast.

The boss of the world’s most valuable company said “the battle of the narratives” between those who think AI will benefit society and those who believe it will degrade or even destroy it was one of his biggest takeaways from 2025.

Huang did admit that “it’s too simplistic” to dismiss either of these views entirely, but he believes some naysayers’ views are having a detrimental effect.

The Insane Future of Mind Uploading [Documentary]

This video explores aliens, mind uploading to other species, genetic engineering, and future robots.

SOURCES:
https://en.wikipedia.org/wiki/Eagle_eye#:~https://www.scientificamerican.com/ar… • https://en.wikipedia.org/wiki/Human_c… ___ 💡 Future Business Tech explores the future of technology and the world. Examples of topics I cover include: • Artificial Intelligence & Robotics • Virtual and Augmented Reality • Brain-Computer Interfaces • Transhumanism • Genetic Engineering SUBSCRIBE: https://bit.ly/3geLDGO ___ This video explores the future of ChatGPT and 10 ways it could change society. Other related terms: aliens, alien species, advanced civilization, genetic engineering, robot, mind upload, mind uploading, brain computer interface, artificial intelligence, ai, future business tech, future technology, future technologies, etc. ℹ️ Some links are affiliate links. They cost you nothing extra but help support the channel so I can create more videos like this. #alien #aliens #avatar #avatar2 #geneticengineering #braincomputerinterface.
https://vcahospitals.com/know-your-pe
https://www.scientificamerican.com/ar
https://en.wikipedia.org/wiki/Human_c

💡 Future Business Tech explores the future of technology and the world.

Examples of topics I cover include:
• Artificial Intelligence & Robotics.
• Virtual and Augmented Reality.
• Brain-Computer Interfaces.
• Transhumanism.
• Genetic Engineering.

SUBSCRIBE: https://bit.ly/3geLDGO

This video explores the future of ChatGPT and 10 ways it could change society. Other related terms: aliens, alien species, advanced civilization, genetic engineering, robot, mind upload, mind uploading, brain computer interface, artificial intelligence, ai, future business tech, future technology, future technologies, etc.

First Therapy Chatbot Trial Yields Mental Health Benefits

face_with_colon_three Year 2025


Dartmouth researchers conducted the first-ever clinical trial of a generative AI-powered therapy chatbot and found that the software resulted in significant improvements in participants’ symptoms, according to results published March 27 in NEJM AI.

People in the study also reported they could trust and communicate with the system, known as Therabot, to a degree that is comparable to working with a mental health professional.

The trial consisted of 106 people from across the United States diagnosed with major depressive disorder, generalized anxiety disorder, or an eating disorder. Participants interacted with Therabot through a smartphone app by typing out responses to prompts about how they were feeling or initiating conversations when they needed to talk.

Autologous T cell therapy targeting multiple antigens shows promise in treating pancreatic cancer

A recent publication in Nature Medicine describes a novel immunotherapy targeting pancreatic cancer that has shown promising results in a first in-human phase 1/2 trial.

The TACTOPS trial, which investigated the safety and clinical effects of autologous T cell therapy targeting multiple tumor antigens, was a collaboration among researchers at Baylor College of Medicine, the Dan L Duncan Comprehensive Cancer Center, the Center for Cell and Gene Therapy, Texas Children’s Hospital and Houston Methodist Hospital.

“We wanted to develop a targeted therapeutic that would hone the immune system on tumor-associated antigens (TAAs) that were present on malignant cells. We targeted five different antigens to deal with the polyclonal nature of the disease,” said co-corresponding author Dr. Ann Leen, professor of pediatrics–hematology and oncology in the Center for Cell and Gene Therapy.

Pediatric Cohort of Charcot-Marie-Tooth DiseaseClinical Features and Genetic Distribution

This study represents a characterization of pediatric Charcot-Marie-Tooth disease in a Canadian cohort and demonstrates that disease onset, severity, and manifestations are highly variable even in childhood.


Background and Objectives.

Opposing functions of distinct regulatory T cell subsets in colorectal cancer

For this study, the researchers focused on a type of colorectal cancer that accounts for 80% to 85% of all colorectal cancers — microsatellite stable (MSS) with proficient mismatch repair (MMRp), meaning the tumors’ DNA is relatively stable. These cancers are largely resistant to checkpoint inhibitor immunotherapies.

Previous groundbreaking research found checkpoint inhibitors alone could successfully treat rectal cancer and several other cancers with the opposite tumor type — those with high microsatellite instability (MSI-H) and mismatch repair deficiency (MMRd). This allows doctors to spare many patients from surgery, chemotherapy, and radiation.

Here the team employed an mouse model that accurately recreates the common mutations, behaviors, and immune cell composition of human colorectal cancer. They found that the regulatory T cells associated with the cancer are split between two types: Cells that make a signaling molecule (cytokine) called interleukin‑10 (IL-10) and cells that don’t.

Through a series of sophisticated experiments that selectively eliminated each type of cell, the researchers discovered:

When IL-10-positive cells were removed, tumor growth accelerated.


In most solid tumors, high numbers of regulatory T (Treg) cells are associated with poorer outcomes because they dampen the immune system’s ability to fight against a tumor.

Programmable Macrophage Mimics for Inflammatory Meniscus Regeneration via Nanotherapy

JUST PUBLISHED: programmable macrophage mimics for inflammatory meniscus regeneration via nanotherapy

Click here to read the latest free, Open Access Article from Research.


The meniscus is a fibrocartilaginous tissue and organ in the human knee joint that serves critical functions, including load transmission, shock absorption, joint stability, and lubrication. Meniscal injuries are among the most common knee injuries, typically caused by acute trauma or age-related degeneration [13]. Minor meniscal injuries are usually treated with in situ arthroscopic procedures or conservative methods, whereas larger or more severe injuries often necessitate total meniscus replacement. Recent advances in materials science and manufacturing techniques have enabled transformative tissue-engineering strategies for meniscal therapy [4, 5]. Several stem cell types, including synovium-derived mesenchymal stem cells, bone-marrow-derived mesenchymal stem cells, and adipose-derived stem cells (ADSCs), have been investigated as candidate seed cells for meniscal regeneration and repair. Notably, ADSCs are clinically promising because of their ease of harvest, high inducibility, innate anti-inflammatory properties, and potential to promote fibrocartilage regeneration [68]. Our group has developed a series of decellularized matrix scaffolds for auricular, nasal, tracheal, and articular cartilage repair using 3-dimensional (3D) bioprinting techniques, successfully repairing meniscus defects and restoring physiological function [912]. However, current tissue-engineering strategies for meniscus defect repair commonly rely on a favorable regenerative microenvironment. Pathological conditions such as osteoarthritis (OA) [13 16], the most prevalent joint disorder, often create inflammatory environments that severely hinder meniscus regeneration [17 21]. Moreover, meniscal injury exacerbates the local inflammatory milieu, further impeding tissue healing and inevitably accelerating OA progression. Therefore, there is an urgent need to establish a cartilaginous immune microenvironment that first mitigates early-stage inflammation after meniscal injury and then sequentially promotes later-stage fibrocartilage regeneration [22 25].

Currently, targeted regulation using small-molecule drug injections is commonly employed to treat inflammatory conditions in sports medicine [26,27]. Most of these drugs exhibit broad-spectrum anti-inflammatory effects and inevitably cause varying degrees of side effects by activating nonspecific signaling pathways. Polyethyleneimine is a highly cationic polymer. It is widely used to modulate inflammation by adsorbing and removing negatively charged proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), via electrostatic interactions [28–31]. Notably, modifying polyethyleneimine into its branched form (branched polyethyleneimine [BPEI]) has been shown to improve cytocompatibility and enhance in vivo metabolic cycling.

Pancreatic organoid study reveals key factors shaping complex lumen formation

Organs often have fluid-filled spaces called lumens, which are crucial for organ function and serve as transport and delivery networks. Lumens in the pancreas form a complex ductal system, and its channels transport digestive enzymes to the small intestine. Understanding how this system forms in embryonic development is essential, both for normal organ formation and for diagnosing and treating pancreatic disorders. Despite their importance, how lumens take certain shapes is not fully understood, as studies in other models have largely been limited to the formation of single, spherical lumens. Organoid models, which more closely mimic the physiological characteristics of real organs, can exhibit a range of lumen morphologies, such as complex networks of thin tubes.

Researchers in the group of Anne Grapin-Botton, director at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden, Germany, and also Honorary Professor at TU Dresden, teamed up with colleagues from the group of Masaki Sano at the University of Tokyo (Japan), Tetsuya Hiraiwa at the Institute of Physics of Academia Sinica (Taiwan), and with Daniel Rivéline at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (France) to explore the processes involved in complex lumen formation. Working with a combination of computational modeling and experimental techniques, the scientists were able to identify the crucial factors that control lumen shape.

Three-dimensional pancreatic structures, also called pancreatic organoids, can form either large spherical lumen or narrow complex interconnected lumen structures, depending on the medium in the dish. By adding specific chemical drugs altering cell proliferation rate and pressure in the lumen, we were able to change lumen shape. We also found that making the epithelial cells surrounding the lumen more permeable reduces pressure and can change the shape of the lumen as well.

/* */