A new paper led by Carey Lisse (accessible here) reports large-scale images of the gas plume around the interstellar object 3I/ATLAS after perihelion, based on data collected last month by the SPHEREx space observatory. The data show enhanced mass loss of dust and gas around 3I/ATLAS.
The new images of 3I/ATLAS were taken in the wavelength range of 0.75–5.0 microns between the 8 and 15 of December, 2025. Each image spans 30,000 kilometers on a side. On these large scales, the brightness maps of dust and organics were found to be pear-shaped, with an anti-tail elongation in the direction of the Sun. All six other gas plumes were found to be nearly round. The major gas species were identified as: cyanide (CN, at a wavelength of 0.93 microns), water (H2O, in the wavelength range of 2.7–2.8 microns), Organics (C-H, between 3.2–3.6 microns), carbon-dioxide (CO2, 4.2–4.3 microns), and carbon-monoxide (CO, 4.7–4.8 microns). The CO2 gas-plume continues to extend out to a few hundreds of thousands of kilometers. The dust spectrum can be described as the sum of scattered sunlight and thermal emission.
Most notably, the signature of sub-micron dust particles that would have enhanced the blue color via Rayleigh scattering are absent. Moreover, these small particles would have also been subjected to a strong solar radiation-pressure and would have formed the standard cometary tail, extending away from the Sun — which is not observed — as I argued in an essay, posted here on December 25, 2026.