Toggle light / dark theme

To develop a practical fusion power system, scientists need to fully understand how the plasma fuel interacts with its surroundings. The plasma is superheated, which means some of the atoms involved can strike the wall of the fusion vessel and become embedded. To keep the system working efficiently, it’s important to know how much fuel might be trapped.

“The less fuel is trapped in the wall, the less radioactive material builds up,” said Shota Abe, a staff research physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL).

Abe is the lead researcher on a study published in Nuclear Materials and Energy. The study looks specifically at how much —thought to be one of the best fuels for —might get stuck in the boron-coated, graphite walls of a doughnut-shaped fusion vessel known as a tokamak. Boron is used in some experimental fusion systems to reduce plasma impurities. However, researchers do not fully understand how a boron coating might impact the amount of fusion fuel that leaves the plasma and becomes embedded in the vessel walls.

Deep Nanometry (DNM) is an innovative technique combining high-speed optical detection with AI-driven noise reduction, allowing researchers to find rare nanoparticles like extracellular vesicles (EVs).

Since EVs play a role in disease detection, DNM could revolutionize early cancer diagnosis. Its applications stretch beyond healthcare, promising advances in vaccine research, and environmental science.

A Breakthrough in Nanoparticle Detection.

Summary: A new study reveals that human accelerated regions (HARs)—segments of DNA that evolved much faster than expected—may be key to the brain’s advanced cognitive abilities. Researchers compared human and chimpanzee neurons and found that HARs drive the growth of multiple neural projections, which enhance communication between brain cells.

When human HARs were introduced into chimp neurons, they also grew more projections, suggesting a direct link between HARs and neural complexity. However, these same genetic changes may also contribute to neurodevelopmental disorders like autism, highlighting the delicate balance of human brain evolution.

A team of scientists from Princeton University has measured the energies of electrons in a new class of quantum materials and has found them to follow a fractal pattern. Fractals are self-repeating patterns that occur on different length scales and can be seen in nature in a variety of settings, including snowflakes, ferns, and coastlines.

A quantum version of a , known as “Hofstadter’s butterfly,” has long been predicted, but the new study marks the first time it has been directly observed experimentally in a real material. This research paves the way toward understanding how interactions among electrons, which were left out of the theory originally proposed in 1976, give rise to new features in these quantum fractals.

The study was made possible by a recent breakthrough in , which involved stacking and twisting two sheets of carbon atoms to create a pattern of electrons that resembles a common French textile known as a moiré design.

Scientists at the University of Geneva (UNIGE) have developed a tool that uses light to precisely control where and when a drug becomes active, ensuring it works exactly where it’s needed.

For medical treatments to be effective and minimize side effects, they must act at the right place and time—a challenge that remains difficult to achieve. Now, a team of biologists and chemists at UNIGE has created a system that allows a molecule to be activated with a brief pulse of light lasting just a few seconds. Tested on a protein essential for cell division, this method could be applied to other molecules, with promising applications in both research and medicine. It may even improve existing treatments, such as those for skin cancer. These findings were recently published in Nature Communications.

The challenge of systemic drug effects.