Harnessing the power of the sun holds the promise of providing future societies with energy abundance. To make this a reality, fusion researchers need to address many technological challenges. For example, fusion reactions occur within a superheated state of matter, called plasma, which can form unstable structures that reduce the efficiency of those reactions.
Characterizing different instabilities could help researchers prevent or make use of them. One particular instability, known as current filamentation, is also relevant to understanding astrophysical phenomena.
Now, for the first time, a team led by researchers at the U.S. Department of Energy’s SLAC National Accelerator Laboratory imaged how the current filamentation instability evolves in real time in high-density plasma.








