Toggle light / dark theme

Together with an international team of researchers from the Universities of Southern California, Central Florida, Pennsylvania State and Saint Louis, physicists from the University of Rostock have developed a novel mechanism to safeguard a key resource in quantum photonics: optical entanglement. Their discovery is published in Science.

Declared as the International Year of Quantum Science and Technology by the United Nations, 2025 marks 100 years since the initial development of quantum mechanics. As this strange and beautiful description of nature on the smallest scales continues to fascinate and puzzle physicists, its quite tangible implications form the basis of modern technology as well as , and are currently in the process of revolutionizing information science and communications.

A key resource to quantum computation is so-called entanglement, which underpins the protocols and algorithms that make quantum computers exponentially more powerful than their classical predecessors. Moreover, entanglement allows for the secure distribution of encryption keys, and entangled photons provide increased sensitivity and noise resilience that dramatically exceed the classical limit.

Researchers have discovered a way to protect quantum information from environmental disruptions, offering hope for more reliable future technologies.

In their study published in Nature Communications, the scientists have shown how certain quantum states can maintain their critical information even when disturbed by . The team includes researchers from the University of the Witwatersrand in Johannesburg, South Africa (Wits University) in collaboration with Huzhou University in China.

“What we’ve found is that topology is a powerful resource for information encoding in the presence of noise,” says Professor Andrew Forbes from the Wits School of Physics.

Professor Ariando and Dr. Stephen Lin Er Chow from the National University of Singapore (NUS) Department of Physics have designed and synthesized a groundbreaking new material—a copper-free superconducting oxide—capable of superconducting at approximately 40 Kelvin (K), or about minus 233°C, under ambient pressure.

Nearly four decades after the discovery of copper oxide superconductivity, which earned the 1987 Nobel Prize in Physics, the NUS researchers have now identified another high-temperature superconducting oxide that expands the understanding of unconventional superconductivity beyond copper oxides.

Researchers at The University of Manchester’s National Graphene Institute have introduced a new class of reconfigurable intelligent surfaces capable of dynamically shaping terahertz (THz) and millimeter (mm) waves. Detailed in a paper published in Nature Communications, this breakthrough overcomes long-standing technological barriers and could pave the way for next-generation 6G wireless technologies and non-invasive imaging systems.

The breakthrough centers around an active spatial light modulator, a surface with more than 300,000 sub-wavelength pixels capable of manipulating THz light in both transmission and reflection.

Unlike previous modulators, which were limited to small-scale demonstrations, the Manchester team integrated graphene-based THz modulators with large-area thin-film transistor (TFT) arrays, enabling high-speed, programmable control over the amplitude and phase of THz light across expansive areas.

For the first time, researchers have shown that terahertz imaging can be used to visualize internal details of the mouse cochlea with micron-level spatial resolution. The non-invasive method could open new possibilities for diagnosing hearing loss and other ear-related conditions.

“Hearing relies on the , a spiral-shaped organ in the inner ear that converts sound waves into neural signals,” said research team leader Kazunori Serita from Waseda University in Japan. “Although conventional imaging methods often struggle to visualize this organ’s fine details, our 3D terahertz near-field imaging technique allows us to see small structures inside the cochlea without any damage.”

Terahertz radiation, which falls between microwaves and the mid-infrared region of the electromagnetic spectrum, is ideal for biological imaging because it is low-energy and non-harmful to tissues, scatters less than near-infrared and visible light and can pass through bone while also being sensitive to changes in hydration and cellular structure.

In a crowded room, we naturally move slower than in an empty space. Surprisingly, worms can show the exact opposite behavior: In an environment with randomly scattered obstacles, they tend to move faster when there are more obstructions. Viewing the worms as “active, polymerlike matter,” researchers at the University of Amsterdam have now explained this surprising fact.

The research was published in Physical Review Letters this week, and was selected by the editors of that journal as an Editors’ Suggestion.

One way in which differ from humans is, of course, their shape: a worm’s length is much larger than its width (i.e., it is spaghetti-like), and moreover it is wiggly—or in more scientific terms: It behaves like an active polymer. The researchers suspected that this active, polymer-like behavior is what makes the worms behave in their counterintuitive way.

Pioneering new research could help unlock exciting new potential to create ultrafast, laser-driven storage devices. The study, led by experts from the University of Exeter, could revolutionize the field of data storage through the development of laser-driven magnetic domain memories.

The new research is based on creating a pivotal new method for using heat to manipulate magnetism with unprecedented precision in two-dimensional (2D) van der Waals materials. It is published in the journal Nature Communications.

Typically, heat is an unwanted byproduct of power consumption in , especially in semiconductors. As devices become smaller and more compact, managing heat has become one of the major challenges in modern electronics.

Cybersecurity researchers have shed light on a new phishing-as-a-service (PhaaS) platform that leverages the Domain Name System (DNS) mail exchange (MX) records to serve fake login pages that impersonate about 114 brands.

DNS intelligence firm Infoblox is tracking the actor behind the PhaaS, the phishing kit, and the related activity under the moniker Morphing Meerkat.