Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

New method uses spin motion to control heat flow in magnetic materials

NIMS, in joint research with the University of Tokyo, AIST, the University of Osaka, and Tohoku University, have proposed a novel method for actively controlling heat flow in solids by utilizing the transport of magnons—quasiparticles corresponding to the collective motion of spins in a magnetic material—and demonstrated that magnons contribute to heat conduction in a ferromagnetic metal and its junction more significantly than previously believed.

The creation of new principles “magnon engineering” for modulating thermal transport using magnetic materials is expected to lead to the development of thermal management technologies. This research result is published in Advanced Functional Materials.

Thermal conductivity is a fundamental parameter characterizing heat conduction in a solid. The primary heat carriers are known to be electrons and phonons, quasiparticles corresponding to lattice vibrations. In current thermal engineering, efforts are underway to modulate thermal conductivity and interfacial thermal resistance by elucidating and controlling the transport properties of heat carriers. In particular, heat conduction modulation focusing on the transport and scattering of phonons has been actively studied over the past decades as “phonon engineering.”

Evidence of a quantum spin liquid ground state in a kagome material

Quantum spin liquids are exotic states of matter in which spins (i.e., the intrinsic angular momentum of electrons) do not settle into an ordered pattern and continue to fluctuate, even at extremely low temperatures. This state is characterized by high entanglement, a quantum effect that causes particles to become linked so that the state of one affects the others’ states, even over long distances.

Researchers at SLAC National Accelerator Laboratory and Stanford University recently gathered evidence of intrinsic quantum spin liquid behavior in a kagome material, a magnetic material in which atoms are arranged in a particular pattern known as a kagome lattice. Their findings, published in Nature Physics, could help to further delineate the fundamental principles underpinning quantum spin liquid states.

“I’ve been interested in understanding quantum spin liquids for the past 20+ years,” Young S. Lee, senior author of the paper, told Phys.org. “These are fascinating new states of quantum matter. In principle, their ground states may possess long-range quantum entanglement, which is extremely rare in real materials.

Your Music Playlist Could Influence Your Driving Ability in Unexpected Ways

For many of us, listening to music is simply part of the driving routine – as ordinary as wearing a seatbelt. We build playlists for road trips, pick songs to stay awake, and even turn the volume up when traffic gets stressful.

More than 80 percent of drivers listen to music on most trips. And many young drivers find it difficult to concentrate without it.

We tend to think music relaxes us, energises us, or helps us focus when we’re behind the wheel.

Traditional Security Frameworks Leave Organizations Exposed to AI-Specific Attack Vectors

In December 2024, the popular Ultralytics AI library was compromised, installing malicious code that hijacked system resources for cryptocurrency mining. In August 2025, malicious Nx packages leaked 2,349 GitHub, cloud, and AI credentials. Throughout 2024, ChatGPT vulnerabilities allowed unauthorized extraction of user data from AI memory.

The result: 23.77 million secrets were leaked through AI systems in 2024 alone, a 25% increase from the previous year.

Here’s what these incidents have in common: The compromised organizations had comprehensive security programs. They passed audits. They met compliance requirements. Their security frameworks simply weren’t built for AI threats.

/* */