Toggle light / dark theme

Princeton University and Xiamen University researchers report that in tropical and subtropical oligotrophic waters, ocean acidification reduces primary production, the process of photosynthesis in phytoplankton, where they take in carbon dioxide (CO2), sunlight, and nutrients to produce organic matter (food and energy).

A six-year investigation found that eukaryotic phytoplankton decline under high CO2 conditions, while cyanobacteria remain unaffected. Nutrient availability, particularly nitrogen, influenced this response.

Results indicate that ocean acidification could reduce primary production in oligotrophic tropical and subtropical oceans by approximately 10%, with global implications. When extrapolated to all affected low-chlorophyll ocean regions, this translates to an estimated 5 billion metric tons loss in global oceanic primary production, which is about 10% of the total carbon fixed by the ocean each year.

Now, scientists at UCL and the University of Cambridge have discovered a new type of ice that resembles liquid water more closely than any other known ice, which may rewrite our understanding of water and its many anomalies. The newly discovered ice is amorphous: Its molecules are disorganized. They need to be properly ordered as ordinary, crystalline ice.

In a jar frozen to-200 degrees Celsius, scientists employed a technique known as ball milling, aggressively shaking common ice and steel balls. Ball milling is used in several industries to grind or blend materials, but it has yet to be applied to ice.

In the study, liquid nitrogen was used to cool a grinding jar to-200 degrees Centigrade, and the density of the ball-milled ice was determined from its buoyancy in liquid nitrogen. Scientists used several other techniques, including X-ray diffraction and Raman spectroscopy, to analyze the structure and properties of ice. They also used small-angle diffraction to explore its long-range structure.

Scientists have identified an enzyme from soil bacteria that can turn air into electricity. They believe it might be transformed into a renewable power source for small devices.

- Advertisement -

The Monash University study, published in the peer-reviewed magazine Nature, demonstrates that the enzyme “Huc” can convert small amounts of hydrogen in the air into an electrical current. An enzyme is a protein that can accelerate chemical reactions in cells.

Countries worldwide are continuously pursuing green and hygienic technology to generate power from limited natural resources. Power generation from renewable energy sources has reached equality with conventional forms. However, the portability of energy derived from cleaner sources has always been challenging.

- Advertisement -

Conventional batteries use elements such as lithium-ion and lead acid, which are toxic, have a serious risk of explosion, and are expensive and harmful to the environment.