Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Adapting Next-Generation Sequencing to in Process CRISPR-Cas9 Genome Editing of Recombinant AcMNPV Vectors: From Shotgun to Tiled-Amplicon Sequencing

The alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most commonly used virus in the Baculovirus Expression Vector System (BEVS) and has been utilized for the production of many human and veterinary biologics. AcMNPV has a large dsDNA genome that remains understudied, and relatively unmodified from the wild-type, especially considering how extensively utilized it is as an expression vector. Previously, our group utilized CRISPR-Cas9 genome engineering that revealed phenotypic changes when baculovirus genes are targeted using either co-expressed sgRNA or transfected sgRNA into a stable insect cell line that produced the Cas9 protein.

The Cyborg Child: SCP-191 and the Ethics of Human Evolution

What happens when the pursuit of perfection forgets compassion?
SCP-191, known as The Cyborg Child, is one of the most haunting examples of speculative bioengineering ever documented. This essay examines the anatomy, psychology, and philosophy of a child transformed into a machine — a being caught between humanity and technology.

In this episode, we explore:

How cybernetic modification redefines the human body.

The science behind hybrid consciousness and neural integration.

The moral cost of evolution without empathy.

What SCP-191 reveals about the posthuman future.

Scientists reverse anxiety by rebalancing the brain

Researchers have discovered a specific set of neurons in the amygdala that can trigger anxiety and social deficits when overactive. By restoring the excitability balance in this brain region, they successfully reversed these symptoms in mice. The results point toward targeted neural therapies for emotional disorders. This finding could reshape how anxiety and depression are treated at the circuit level.

An Introduction to Ebolavirus Biology

I wrote this educational primer on ebolavirus as a fun exploration of a topic not related to my current research. While such knowledge may be useful in the event of some future ebolavirus epidemic, it is mostly just an exercise in curiosity and intellectual enrichment. #virology #molecularbiology.

My website version: [ https://logancollinsblog.com/2025/11/04/an-introduction-to-ebolavirus-biology/](https://logancollinsblog.com/2025/11/04/an-introduction-to-ebolavirus-biology/)

Substack version: [ https://loganthrashercollins.substack.com/p/an-introduction-…us-biology](https://loganthrashercollins.substack.com/p/an-introduction-…us-biology)


PDF version: An Introduction to Ebolavirus Biology – Logan Thrasher Collins

I wrote this educational primer as a fun exploration of a topic not related to my current research. While such knowledge may be useful in the event of some future ebolavirus epidemic, it is mostly just an exercise in curiosity and intellectual enrichment. I hope that you too enjoy learning about this fascinating (but scary!) virus as you browse my writeup. Also, if you’re an ebolavirus expert with concepts, edits, and/or ideas to offer, feel free to reach out with your additional insights! Shoutout: I’d like to give a special shoutout/thanks to Jain et al. (reference 4) and Bodmer et al. (reference 2). I used their papers extensively throughout the creation of writeup!

Genome

The Glass Universe: How the Ladies of the Harvard Observatory Took the Measure of the Stars

In the mid-nineteenth century, the Harvard College Observatory began employing women as calculators, or “human computers,” to interpret the observations their male counterparts made via telescope each night. At the outset this group included the wives, sisters, and daughters of the resident astronomers, but soon the female corps included graduates of the new women’s colleges —Vassar, Wellesley, and Smith. As photography transformed the practice of astronomy, the ladies turned from computation to studying the stars captured nightly on glass photographic plates.

The “glass universe” of half a million plates that Harvard amassed over the ensuing decades—through the generous support of Mrs. Anna Palmer Draper, the widow of a pioneer in stellar photography—enabled the women to make extraordinary discoveries that attracted worldwide acclaim. They helped discern what stars were made of, divided the stars into meaningful categories for further research, and found a way to measure distances across space by starlight. Their ranks included Williamina Fleming, a Scottish woman originally hired as a maid who went on to identify ten novae and more than three hundred variable stars; Annie Jump Cannon, who designed a stellar classification system that was adopted by astronomers the world over and is still in use; and Dr. Cecilia Helena Payne, who in 1956 became the first ever woman professor of astronomy at Harvard—and Harvard’s first female department chair.

The value of physical intelligence: How researchers are working to safely advance capabilities of humanoid robots

You may not remember it, but odds are you took a few tumbles during your toddler era. You weren’t alone. Falling, after all, is a natural consequence of learning to crawl, walk, climb and jump. Our balance, coordination and motor skills are developing throughout early childhood.

But it also doesn’t take long for these abilities—also known as physical intelligence—to become second nature for most, including deceptively complex actions such as walking, grasping objects and navigating our way across a room without having to think about it.

“As humans, we often take our physical intelligence for granted because it becomes so automatic when we’re still young,” said Bowen Weng, roboticist and assistant professor of computer science at Iowa State University.

Reactivating a fetal gene enables adult heart cells to regenerate after injury

Around the globe, heart disease remains one of the top causes of death. Once patients begin to suffer from serious heart problems, like heart attacks and heart failure, the heart muscles become damaged and are difficult to treat and repair. Although many therapies have been developed to treat symptoms, full recovery to a pre-disease state has been essentially impossible. This is due to a lack of regeneration ability in adult human heart cells. Studies using stem cells or progenitor cells for repair have demonstrated limited efficacy in clinical trials, thus far.

However, there may be new hope for these patients. Researchers from the Icahn School of Medicine at Mount Sinai in New York have been working to turn back time by switching on a gene known to regenerate heart muscle cells, or cardiomyocytes. Their study, recently published in npj Regenerative Medicine, indicates that adult human hearts may be given the ability to regenerate themselves with future therapies.

Novel peanut allergy vaccine shows promise to transform allergy care

Researchers at Imperial’s National Heart & Lung Institute (NHLI) have reported encouraging results from the first phase of clinical trials for a new peanut allergy vaccine.

This vaccine aims to ‘reset’ the immune system, potentially allowing the individual to tolerate peanuts without triggering the severe allergic reactions that often occur when peanut proteins are ingested.


Phase 1 trials for a new peanut allergy vaccine show promising results, offering potential long-term relief from allergic reactions.

In collaboration with industry partner Allergy Therapeutics, the team from Imperial has developed a vaccine using virus-like particle (VLP) technology to encapsulate the peanut allergen protein Ara h2. In the latest paper, published in the Journal of Allergy and Clinical Immunology (JACI), a phase 1 first-on-human clinical trial demonstrated the VLP peanut allergy vaccine’s safety and tolerability, with no reactivity observed during skin prick tests comparing the vaccine to control treatments.

/* */