Toggle light / dark theme

Was our universe generated inside the quantum chaos of a black hole in another universe?

Could Our Universe Have Been Born from a Black Hole?

Black holes are among the most mysterious and fascinating objects in the universe, known for their powerful gravitational pull that nothing can escape. Interestingly, if you were to compress all the matter in the universe into a single point, you would create a black hole roughly the size of the universe itself. While we do not live inside a black hole, the similarities between black holes and our universe raise intriguing questions about their connection.

Event horizons: no escape in both cases.

Quantum teleportation has begun to change the world

Quantum teleportation, once confined to the pages of science fiction, is steadily becoming a tangible scientific achievement. Advances in quantum mechanics over the last decade have transformed teleportation from a theoretical concept into an experimental reality.

These breakthroughs have revealed innovative methods for transmitting information instantaneously over vast distances, offering transformative possibilities for computing, communication, and cryptography. Scientists are now closer than ever to bridging the gap between imagination and reality in this cutting-edge field.

At its core, teleportation in the quantum world isn’t about physically transporting objects or people, as popularized by franchises like Star Trek. Instead, it involves transmitting quantum states—essentially the fundamental properties of particles like electrons or photons—without physical movement of the particles themselves.

First demonstration of quantum teleportation over busy Internet cables

Northwestern University engineers are the first to successfully demonstrate quantum teleportation over a fiber optic cable already carrying Internet traffic.

The discovery, published in the journal Optica, introduces the new possibility of combining quantum communication with existing Internet cables — greatly simplifying the infrastructure required for for advanced sensing technologies or quantum computing applications.

Quantum correlations could solve the black hole information paradox

The black hole information paradox has puzzled physicists for decades. New research shows how quantum connections in spacetime itself may resolve the paradox, and in the process leave behind a subtle signature in gravitational waves.

For a long time we thought black holes, as mysterious as they were, didn’t cause any trouble. Information can’t be created or destroyed, but when objects fall below the event horizons, the information they carry with them is forever locked from view. Crucially, it’s not destroyed, just hidden.

But then Stephen Hawking discovered that black holes aren’t entirely black. They emit a small amount of radiation and eventually evaporate, disappearing from the cosmic scene entirely. But that radiation doesn’t carry any information with it, which created the famous paradox: When the black hole dies, where does all its information go?

Grapes double sensor magnetic power in an epic quantum breakthrough

Grape pairs enhance magnetic fields, advancing compact, cost-effective quantum sensor technology.


In interesting research, insights from ordinary supermarket grapes led researchers to boost quantum sensor performance.

The study reveals that grape pairs generate localized magnetic field hotspots for microwaves, aiding compact and cost-effective quantum sensor development.

The Macquarie University team’s work in Sydney builds on viral videos of grapes producing plasma, glowing charged particles, in microwave ovens.

High-quality nanodiamonds offer new bioimaging and quantum sensing potential

Quantum sensing is a rapidly developing field that utilizes the quantum states of particles, such as superposition, entanglement, and spin states, to detect changes in physical, chemical, or biological systems. A promising type of quantum nanosensor is nanodiamonds (NDs) equipped with nitrogen-vacancy (NV) centers. These centers are created by replacing a carbon atom with nitrogen near a lattice vacancy in a diamond structure.

When excited by light, the NV centers emit photons that maintain stable spin information and are sensitive to external influences like magnetic fields, electric fields, and temperature. Changes in these spin states can be detected using optically detected (ODMR), which measures fluorescence changes under .

In a recent breakthrough, scientists from Okayama University in Japan developed nanodiamond sensors bright enough for bioimaging, with spin properties comparable to those of bulk diamonds. The study, published in ACS Nano, on 16 December 2024, was led by Research Professor Masazumi Fujiwara from Okayama University, in collaboration with Sumitomo Electric Company and the National Institutes for Quantum Science and Technology.

Grapes of math: Ordinary fruit enhances performance of quantum sensors

Macquarie University researchers have demonstrated how ordinary supermarket grapes can enhance the performance of quantum sensors, potentially leading to more efficient quantum technologies.

The study, published in Physical Review Applied on 20 December 2024, shows that pairs of grapes can create strong localized magnetic field hotspots of microwaves which are used in quantum sensing applications—a finding that could help develop more compact and cost-effective quantum devices.

“While previous studies looked at the causing the plasma effect, we showed that grape pairs can also enhance magnetic fields, which are crucial for quantum sensing applications,” says lead author Ali Fawaz, a quantum physics Ph.D. candidate at Macquarie University.

/* */