Menu

Blog

Archive for the ‘quantum physics’ category: Page 232

Feb 14, 2023

Encoding breakthrough allows for solving wider set of applications using neutral-atom quantum computers

Posted by in categories: particle physics, quantum physics, robotics/AI

QuEra Computing, maker of the world’s first and only publicly accessible neutral-atom quantum computer—Aquila—today announces its research team has uncovered a method to perform a wider set of optimization calculations than previously known to be possible using neutral-atom machines.

The findings are the work of QuEra researchers and collaborators from Harvard and Innsbruck Universities: Minh-Thi Nguyen, Jin-Guo Liu, Jonathan Wurtz, Mikhail D. Lukin, Sheng-Tao Wang, and Hannes Pichler.

“There is no question that today’s news helps QuEra deliver value to more partners, sooner. It helps bring us closer to our objectives, and marks an important milestone for the industry as well,” said Alex Keesling, CEO at QuEra Computing. “This opens the door to working with more corporate partners who may have needs in logistics, from transport and retail to robotics and other high-tech sectors, and we are very excited about cultivating those opportunities.”

Feb 14, 2023

Physicists Say Aliens May Be Using Black Holes as Quantum Computers

Posted by in categories: alien life, computing, existential risks, quantum physics

If life is common in our Universe, and we have every reason to suspect it is, why do we not see evidence of it everywhere? This is the essence of the Fermi Paradox, a question that has plagued astronomers and cosmologists almost since the birth of modern astronomy.

It is also the reasoning behind the Hart-Tipler Conjecture, one of the many (many!) proposed resolutions, which asserts that if advanced life had emerged in our galaxy sometime in the past, we would see signs of their activity everywhere we looked. Possible indications include self-replicating probes, megastructures, and other Type III-like activity.

Continue reading “Physicists Say Aliens May Be Using Black Holes as Quantum Computers” »

Feb 14, 2023

Quantum Computing: Why is it Better Than Supercomputers?

Posted by in categories: biotech/medical, quantum physics, robotics/AI, supercomputing

Researchers in the US developed a new energy-based benchmark for quantum advantage and used it to demonstrate noisy intermediate-scale quantum (NISQ) computers that use several orders of magnitude less energy than the world’s most powerful supercomputer. Quantum computing is a branch of computer science that focuses on the development of technologies based on quantum theory principles.

Quantum computing solves problems that are too complex for classical computing by utilizing the unique properties of quantum physics. The question of whether a quantum computer can perform calculations beyond the reach of even the most powerful conventional supercomputer is becoming increasingly relevant as quantum computers become larger and more reliable. This ability, dubbed “quantum supremacy,” marks the transition of quantum computers from scientific curiosity to useful devices. Scientists predict that Quantum computing is better than supercomputers as it performs tasks a million times faster. Quantum computers can handle complex calculations easily because they are built based on quantum principles that go beyond classical physics.

Quantum computers and supercomputers are extremely powerful machines used for complex calculations, problem solving, and data analysis. While both have the potential to revolutionize computing technology, they have significant speed and capability differences. In 2019, Google’s quantum computer performed a calculation that would take the world’s most powerful computer 10,000 years to complete. It is the seed for the world’s first fully functional quantum computer, which will be capable of producing better medicines, developing smarter artificial intelligence, and solving cosmic mysteries. Theoretical physicist John Preskill proposed a formulation of quantum supremacy, or the superiority of quantum computers, in 2012. He dubbed it the moment when quantum computers can perform tasks that ordinary computers cannot. To quickly crunch large amounts of data and achieve a single result, supercomputers employ a traditional computing approach with multiple processors.

Feb 14, 2023

Theorizing the Basis of Our World: A Reading List on Quantum Reality

Posted by in categories: mobile phones, nuclear energy, particle physics, quantum physics

Quantum Mechanics is the science behind nuclear energy, smart phones, and particle collisions. Yet, almost a century after its discovery, there is still controversy over what the theory actually means. The problem is that its key element, the quantum-mechanical wave function describing atoms and subatomic particles, isn’t observable. As physics is an experimental science, physicists continue to argue over whether the wave function can be taken as real, or whether it is just a tool to make predictions about what can be measured—typically large, “classical” everyday objects.

The view of the antirealists, advocated by Niels Bohr, Werner Heisenberg, and an overwhelming majority of physicists, has become the orthodox mainstream interpretation. For Bohr especially, reality was like a movie shown without a film or projector creating it: “There is no quantum world,” Bohr reportedly affirmed, suggesting an imaginary border between the realms of microscopic, “unreal” quantum physics and “real,” macroscopic objects—a boundary that has received serious blows by experiments ever since. Albert Einstein was a fierce critic of this airy philosophy, although he didn’t come up with an alternative theory himself.

For many years only a small number of outcasts, including Erwin Schrödinger and Hugh Everett populated the camp of the realists. This renegade view, however, is getting increasingly popular—and of course triggers the question of what this quantum reality really is. This is a question that has occupied me for many years, until I arrived at the conclusion that quantum reality, deep down at the most fundamental level, is an all-encompassing, unified whole: “The One.”

Feb 14, 2023

Quantum Entanglement Isn’t All That Spooky After All

Posted by in category: quantum physics

The way we teach quantum theory conveys a spookiness that isn’t actually there.

Feb 12, 2023

Can You Trust Your Quantum Simulator? MIT Physicists Report a New Quantum Phenomenon

Posted by in categories: computing, particle physics, quantum physics

Physics gets strange at the atomic scale. Scientists are utilizing quantum analog simulators – laboratory experiments that involve cooling numerous atoms to low temperatures and examining them using precisely calibrated lasers and magnets – to uncover, harness, and control these unusual quantum effects.

Scientists hope that any new understanding gained from quantum simulators will provide blueprints for designing new exotic materials, smarter and more efficient electronics, and practical quantum computers. But in order to reap the insights from quantum simulators, scientists first have to trust them.

That is, they have to be sure that their quantum device has “high fidelity” and accurately reflects quantum behavior. For instance, if a system of atoms is easily influenced by external noise, researchers could assume a quantum effect where there is none. But there has been no reliable way to characterize the fidelity of quantum analog simulators, until now.

Feb 12, 2023

Scientists just made a wormhole to learn more about traversing space and time

Posted by in categories: cosmology, quantum physics

Wormholes are an intriguing bit that most people probably chalk up to science fiction. After all, seeing the Millennium Falcon barreling through hyperspeed in Star Wars is exciting, but there’s no way we could ever actually travel like that, right? Well, it might not actually be that impossible. According to new research, scientists were able to make a man-made wormhole using a quantum processor.

Of course, this isn’t to be misconstrued. They didn’t actually make a wormhole that someone was able to rip through space and time. Instead, they made a small, crummy wormhole on a quantum processor that could help teach us more about traversable wormhole dynamics. As such, the man-made wormhole, even if crummy, could be home to a plethora of data.

The physicists shared a paper detailing their findings on the man-made wormhole in the journal Nature. According to that paper, the “baby wormhole” was a successful attempt at observing traversable wormhole dynamics, something physicists have been trying to understand for decades. And, with scientists recently discovering a way to find wormholes in space, it could be more important than ever.

Feb 11, 2023

A Blast Chiller for the Quantum World

Posted by in categories: particle physics, quantum physics

Through optomechanical experiments, scientists aim to delve into the boundaries of the quantum realm and lay the groundwork for the creation of highly sensitive quantum sensors. In these experiments, everyday visible objects are coupled to superconducting circuits through electromagnetic fields.

To produce functional superconductors, these experiments are conducted inside cryostats at a temperature of around 100 millikelvins. However, this is still far from low enough to truly enter the quantum world. In order to observe quantum effects on large-scale objects, they must be cooled to nearly absolute zero.

Absolute zero is the theoretical lowest temperature on the thermodynamic temperature scale. At this temperature, all atoms of an object are at rest and the object does not emit or absorb energy. The internationally agreed-upon value for this temperature is −273.15 °C (−459.67 °F; 0.00 K).

Feb 11, 2023

Elusive transition shows universal quantum signatures

Posted by in categories: computing, quantum physics

There are stark differences between metals, through which electrons flow freely, and electrical insulators, in which electrons are essentially immobile. And despite the obvious difficulties in finding a way to switch back and forth from a metal to an insulator within one material, physicists are trying to figure out how.

“Say you want to put billions of circuit elements on a tiny chip and then control, at that microscopic scale, whether just one of the elements is metallic or insulating in a controlled fashion,” said Debanjan Chowdhury, assistant professor of physics in the College of Arts and Sciences. “It would be remarkable if you could control the microscopic device at the flick of a switch.”

Digging into recent past experimental results to try to reconcile experiment and theory, Chowdhury and doctoral candidate Sunghoon Kim found that even a tiny amount of imperfection, inherent in any real-life material, plays a key role in revealing the universal physics associated with the experimental metal-to-insulator transition (Physical Review Letters, “Continuous Mott Transition in Moiré Semiconductors: Role of Long-Wavelength Inhomogeneities”). Understanding the physics behind this mysterious phase transition could lead to new complex microscopic circuits, superconductors and exotic insulators that could find use in quantum computing.

Feb 11, 2023

Quantum entanglement maps gluons inside nuclei

Posted by in categories: mapping, quantum physics

Tomographic technique uses pions to analyse photon–gluon collisions.