33 kilometers: the new record for quantum entanglement between two atoms over fiber optics. Key Takeaways Researchers entangled two atoms across 33 kilometers of fiber […].
Category: particle physics – Page 46
A team of physicists from Sofia University in Bulgaria has proposed a fascinating theory that wormholes, hypothetical tunnels linking different parts of the universe, could be hiding in plain sight. These wormholes may resemble black holes so closely that current technology cannot distinguish between the two, according to a new study reported by New Scientist.
Black holes have long been a source of mystery. They absorb everything, even light, leaving no trace of what falls into them. But where does the swallowed matter go? Some physicists have speculated that black holes might connect to “white holes,” which would spew out particles and radiation on the other end. Together, these phenomena could form a wormhole, or more specifically, an Einstein-Rosen bridge, connecting distant regions of space and time.
Scientists have made a satisfying and intriguing physics discovery some 16 years after it was first predicted to be a possibility: a quasiparticle (a group of particles behaving as one) that only has an effective mass when moving in one direction.
In physics, mass generally refers to a property of particles that relates to things like their energy and resistance to movement. Yet not all mass is built the same – some describes the energy of a particle at rest, for example, while mass may also take into account the energy of a particle’s motion.
In this case, the effective mass describes the quasiparticle’s response to forces, which varies depending on whether the movement through the material is up and down, or back and forth.
Ultra-sensitive detectors have observed neutrinos from the Sun, whose signals mimic those expected to be produced by elusive dark matter.
An international team of scientists led by Dr. Lukas Bruder, junior research group leader at the Institute of Physics, University of Freiburg, has succeeded in producing and directly controlling hybrid electron-photon quantum states in helium atoms.
To this end, they generated specially prepared, highly intense extreme ultraviolet light pulses using the FERMI free electron laser in Trieste, Italy. The researchers achieved control of the hybrid quantum states using a new laser pulse-shaping technique. Their results have been published in the journal Nature.
Non-reciprocal interactions can increase the order in an active system. This is the finding of a study by scientists from the department of Living Matter Physics at the Max Planck Institute for Dynamics and Self-Organization (MPI-DS).
The researchers created a model to describe the emerging patterns depending on the amount of non-reciprocity in an active system. The work is published in the journal Physical Review Letters.
Living matter often shows characteristics that are absent in simpler physical systems. A typical example is the asymmetrical interaction between different particle species: one type of molecule might be attracted by the other, which in turn is repelled—just like a predator chases its prey which in turn tries to escape.
Fusion energy research is being pursued around the world as a means of solving energy problems. Magnetic confinement fusion reactors aim to extract fusion energy by confining extremely hot plasma in strong magnetic fields.
Its development is a comprehensive engineering project involving many advanced technologies, such as superconducting magnets, reduced-activation materials, and beam and wave heating devices. In addition, predicting and controlling the confined plasma, in which numerous charged particles and electromagnetic fields interact in complex ways, is an interesting research subject from a physics perspective.
To understand the transport of energy and particles in confined plasmas, theoretical studies, numerical simulations using supercomputers, and experimental measurements of plasma turbulence are being conducted.
A Twisted Path to Innovation: Vortex Electric Fields in 2D Materials Advance Electronics and Quantum Devices
Posted in computing, nanotechnology, particle physics, quantum physics | Leave a Comment on A Twisted Path to Innovation: Vortex Electric Fields in 2D Materials Advance Electronics and Quantum Devices
In the world of science, even a small twist may carry immense implications for materials. Researchers at City University of Hong Kong have uncovered how a subtle rotation in 2D layers can give rise to a vortex electric field. This finding, published in Science, has the potential to impact electronic, magnetic, and optical devices as well as new applications in quantum computing, spintronics, and nanotechnology. According to Professor Ly Thuc Hue of CityUHK’s Department of Chemistry, the study demonstrates how “a simple twist in bilayer 2D materials” can induce this electric field, bypassing the need for costly thin-film deposition techniques.
Akin to solving intricate technical puzzles, researchers had to ensure clean, precisely aligned layers of material—a notoriously difficult challenge in the world of 2D materials. Twisted bilayers are made by stacking two thin layers of a material at a slight angle, creating unique electronic properties.
However, traditional methods of synthesizing these bilayers often limit the range of twist angles, particularly at smaller degrees, making exploration of their full potential nearly impossible. To address this, the team at City University of Hong Kong developed an ice-assisted transfer technique that uses a thin sheet of ice to align and transfer bilayers with precision.
Google has unveiled a new chip which it claims takes five minutes to solve a problem that would currently take the world’s fastest super computers ten septillion – or-1 years – to complete.
The chip is the latest development in a field known as quantum computing — which is attempting to use the principles of particle physics to create a new type of mind-bogglingly powerful computer.
Google says its new quantum chip, dubbed \.
Physicists have long theorized the existence of a unique state of matter known as a quantum spin liquid. In this state, magnetic particles do not settle into an orderly pattern, even at absolute zero temperature. Instead, they remain in a constantly fluctuating, entangled state.
This unusual behavior is governed by complex quantum rules, leading to emergent properties that resemble fundamental aspects of our universe, such as the interactions of light and matter. Despite its intriguing implications, experimentally proving the existence of quantum spin liquids and exploring their distinctive properties has been extremely challenging.
In a paper recently published in Nature Physics, an international group of researchers comprised of an experimental team from Switzerland and France and theoretical physicists in Canada and the U.S., including Rice University, have found evidence of this enigmatic quantum spin liquid in a material known as pyrochlore cerium stannate.