Toggle light / dark theme

Over the past few years, some researchers have been working on alternative energy storage systems that leverage the principles of quantum mechanics. These systems, known as quantum batteries, could be more efficient and compact than conventional battery technologies, while also achieving faster charging times.

In a recent paper published in Physical Review Letters, a research group at University of Genova introduced a new spin quantum battery, a battery that leverages the spin degrees of freedom of particles to store and release energy. This battery is charged in a unique and advantageous way, without the need for an external field.

“Quantum many-body theory and non-equilibrium physics are traditional topics in the quantum condensed matter theory group led by Maura Sassetti at University of Genova,” Dario Ferraro, senior author of the paper, told Phys.org.

Researchers at the University of Chicago have developed a new method for enhancing quantum information systems by integrating trapped atom arrays with photonic devices.

This innovation allows for scalable quantum computing and networking by overcoming previous technological incompatibilities. The design features a semi-open chip that minimizes interference and enhances atom connectivity, promising significant advances in computational speed and interconnectivity for larger quantum systems.

Merging technologies for enhanced quantum computing.

Asteroids are remnants of the formation of our solar system, and while many can be found within the asteroid belt between the orbits of Mars and Jupiter, some cannot. One such object is asteroid (162173) Ryugu, a 1 km-wide near-Earth asteroid believed to have originated in the asteroid belt. However, it has since moved to cross Earth’s orbit, located 300 million km from our planet.

The asteroid is constantly bombarded by debris in space and new research, published in The Astrophysical Journal, has suggested that even can have damaging effects.

Japan’s Aerospace Exploration Agency (JAXA) launched the Hayabusa2 spacecraft to conduct and sample collection on the asteroid in 2018 and 2019. Laboratory work on these samples identified a distinct pattern of dehydration of phyllosilicates (sheet-like silicate minerals, such as magnesium-rich serpentine and saponite), whereby the bonds between the included oxygen and hydrogen atoms are broken.

A team of engineers at the University of Science and Technology of China has developed a new way to code data onto a diamond with higher density than prior methods. In their paper published in the journal Nature Photonics, the group notes that such optical discs could hold data safely at room temperature for millions of years.

Prior research has shown that it is possible to code data onto a diamond, allowing for much longer data than any other known method. But such efforts have produced low-density storage. In this new effort, the research team developed a new method for etching data onto a diamond that allows for much denser data storage, and thus for storing more information onto a single diamond.

In their work, the researchers used diamond pieces just a few millimeters in length—they were pursuing a proof of concept, not a true storage medium. Future versions, they note, could be the size of a Blu-ray disc. The new method involved the use of a to remove single carbon atoms from the surface of the diamond, leaving a tiny cavity. The cavity, the researchers note, exhibits a certain level of brightness when another laser is shone on it.

Theoretical physicists have established a close connection between the two rapidly developing fields in theoretical physics, quantum information theory and non-invertible symmetries in particle and condensed matter theories, after proving that any non-invertible symmetry operation in theoretical physics is a quantum operation. The study was published in Physical Review Letters as an Editors’ Suggestion on November 6.

In physics, symmetry provides an important clue to the properties of a theory. For example, if the N-poles in a are replaced by the S-poles, and the S-poles by the N-poles all at once, the forces on objects and the energy stored in the magnetic field remain the same, even though the direction of the magnetic field has now become reversed. This is because the equations describing the magnetic field are symmetric with respect to the operation of swapping the N and S poles.

Over the past few years, the concept of symmetries has received generalization in various directions in the theoretical study of particle physics and condensed matter physics, becoming an active area of research. One such generalization is non-invertible symmetry. The operation of conventional symmetries is always invertible. There exists a reverse operation to undo it. Non-invertible symmetry, on the other hand, allows certain non-invertibility in such symmetry operations.

In a commercial warehouse overlooking the ocean in New Zealand’s capital Wellington, a startup is trying to recreate the power of a star on Earth using an unconventional “inside out” reactor with a powerful levitating magnet at its core.

Its aim is to produce nuclear fusion, a near-limitless form of clean energy generated by the exact opposite reaction the world’s current nuclear energy is based on — instead of splitting atoms, nuclear fusion sets out to fuse them together, resulting in a powerful burst of energy that can be achieved using the most abundant element in the universe: hydrogen.

Earlier this month, OpenStar Technologies announced it had managed to create superheated plasma at temperatures of around 300,000 degrees Celsius, or 540,000 degrees Fahrenheit — one necessary step on a long path toward producing fusion energy.

Vorticity, a measure of the local rotation or swirling motion in a fluid, has long been studied by physicists and mathematicians. The dynamics of vorticity is governed by the famed Navier-Stokes equations, which tell us that vorticity is produced by the passage of fluid past walls. Moreover, due to their internal resistance to being sheared, viscous fluids will diffuse the vorticity within them and so any persistent swirling motions will require a constant resupply of vorticity.

Physicists at the University of Chicago and applied mathematicians at the Flatiron Institute recently carried out a study exploring the behavior of viscous fluids in which tiny rotating particles were suspended, acting as local, mobile sources of vorticity. Their paper, published in Nature Physics, outlines fluid behaviors that were never observed before, characterized by self-propulsion, flocking and the emergence of chiral active phases.

“This experiment was a confluence of three curiosities,” William T.M. Irvine, a corresponding author of the paper, told Phys.org. “We had been studying and engineering parity-breaking meta-fluids with fundamentally new properties in 2D and were interested to see how a three-dimensional analog would behave.

It’s no secret: when we savour a delicious piece of fish or a platter of seafood, we’re not just consuming valuable omega-3s and vitamin D. Alongside these benefits come less appetising elements – countless micro– and nano-plastics.

These plastic particles, measuring less than 5 millimetres, enter our oceans through human waste and penetrate the food chain. According to an Ifremer study, around 24,400 billion microplastics are floating on the ocean’s surface.

These particles are found in all marine organisms – from microalgae to fish, which occupy higher levels of the food chain. This phenomenon not only threatens marine ecosystems but also raises concerns about potential risks to human health.

Check out courses in science, computer science, or mathematics on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Ten years ago, physicists discovered an anomaly that was dubbed the “ATOMKI anomaly”. The decays of certain atomic nuclei disagreed with our current understanding of physics. Particle physicists assigned the anomaly to a new particle, X17, often described as a fifth force. The anomaly was now tested by a follow-up experiment, but this is only the latest twist in a rather confusing story.

Paper: https://journals.aps.org/prl/abstract

🤓 Check out my new quiz app ➜ http://quizwithit.com/