Toggle light / dark theme

Physicists Just Found a Way to Control Atoms Using Twisted Light

Scientists have unlocked a new way to control ionization, the process where atoms lose electrons, using specially designed light beams

By leveraging optical vortex beams, light that carries angular momentum, they can precisely dictate how electrons break free from atoms. This discovery could reshape imaging technology, enhance particle acceleration, and open doors to advancements in quantum computing.

Performing computation using quantum-mechanical phenomena such as superposition and entanglement.

Searching for Extraterrestrial Life on Hycean Worlds

Michaela Leung: “Oxygen is currently difficult or impossible to detect on an Earth-like planet. However, methyl halides on Hycean worlds offer a unique opportunity for detection with existing technology.”


What can methyl halides, which are gases that consist of one carbon and three hydrogen atoms while being attached to a halogen atom, help scientists identify life beyond Earth? This is what a recent study published in The Astrophysical Journal Letters hopes to address as an international team of researchers investigated how methyl halides on exoplanets known as “Hycean” worlds could indicate the presence of life as we know it, or even as we don’t know it. Hycean exoplanets possess liquid water oceans with a hydrogen atmosphere above them, potentially enabling appropriate surface temperatures and pressures for life to exist.

For the study, the researchers discussed the potential for using NASA’s James Webb Space Telescope (JWST) to observe large exoplanets orbiting red dwarf stars, which are smaller and cooler than our Sun. The researchers noted that recent observations of K2-18 b and TOI-270 d, which are designated as Super-Earth and Neptune-like exoplanets, respectively, while each orbiting red dwarf stars. Additionally, such exoplanets could be ideal targets for JWST to identify methyl halides in their atmospheres. The reason Hycean exoplanets are considered ideal targets is due to the difficulty of observing Earth-sized exoplanets orbiting brighter stars.

‘Dark Matter’ May Be a Whole Shadow World of Mysterious Atoms and Forces

Dark matter could be an entire dark sector of the universe, with its own particles and forces.

By Kathryn Zurek edited by Clara Moskowitz

Have you ever stood by the sea and been overwhelmed by its vastness, by how quickly it could roll in and swallow you? Evidence suggests that we are suspended in a cosmic sea of dark matter, a mysterious substance that shapes galaxies and large structures in the universe but is transparent to photons, the carriers of the electromagnetic force. Our galactic home, the Milky Way, is submerged in dark matter, but this hidden body but does not devour us, because its forces cannot touch the regular matter we’re made of.

New theory suggests star mergers produce universe’s highest-energy particles

Ultrahigh Energy Cosmic Rays are the highest-energy particles in the universe, whose energies are more than a million times what can be achieved by humans. But while the existence of UHECRs has been known for 60 years, researchers have not succeeded in formulating a satisfactory explanation for their origin that explains all the observations.

But a new theory introduced by New York University physicist Glennys Farrar provides a viable and testable explanation for how UHECRs are created.

“After six decades of effort, the origin of the mysterious highest-energy particles in the universe may finally have been identified,” says Farrar, a Collegiate Professor of Physics and Julius Silver, Rosalind S. Silver, and Enid Silver Winslow Professor at NYU. “This insight gives a new tool for understanding the most cataclysmic events of the universe: two neutron stars merging to form a black hole, which is the process responsible for the creation of many precious or exotic elements, including gold, platinum, uranium, iodine, and xenon.”

Atomic Anomaly Confirmed! Evidence for a “dark force”?

Check out my quantum mechanics course on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

In 2020, a group of MIT researchers detected an anomaly in the nuclei of ytterbium atoms. They said that the nuclei’s strange behavior might be indicative of a “dark force” caused by a currently-undiscovered mystery particle that might make up dark matter. In 2020, the anomaly only had a significance of 3 sigma. But now, another group has confirmed it at a whopping 23 sigma! What does that mean for physics? Let’s find out.

Paper: https://journals.aps.org/prl/abstract… Check out my new quiz app ➜ http://quizwithit.com/ 💌 Support me on Donorbox ➜ https://donorbox.org/swtg 📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/ 👉 Transcript with links to references on Patreon ➜ / sabine 📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle… 👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl… 🔗 Join this channel to get access to perks ➜ / @sabinehossenfelder 🖼️ On instagram ➜ / sciencewtg #science #sciencenews #physics #darkmatter.

🤓 Check out my new quiz app ➜ http://quizwithit.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.

#science #sciencenews #physics #darkmatter

Twisting 2D materials creates artificial atoms that could advance quantum computers

By taking two flakes of special materials that are just one atom thick and twisting them at high angles, researchers at the University of Rochester have unlocked unique optical properties that could be used in quantum computers and other quantum technologies.

Nanomaterials used to measure first nuclear reaction on radioactive nuclei produced in neutron star collisions

Physicists have measured a nuclear reaction that can occur in neutron star collisions, providing direct experimental data for a process that had previously only been theorized. The study, led by the University of Surrey, provides new insight into how the universe’s heaviest elements are forged—and could even drive advancements in nuclear reactor physics.

Working in collaboration with the University of York, the University of Seville, and TRIUMF, Canada’s national particle accelerator center, the breakthrough marks the first-ever measurement of a weak r-process reaction cross-section using a radioactive ion beam, in this case studying the 94 Sr(α, n)97 Zr reaction. This is where a radioactive form of strontium (strontium-94) absorbs an (a nucleus), then emits a neutron and transforms into zirconium-97.

The study has been published in Physical Review Letters.

The first observation of amplified spontaneous emission from electron-hole plasma in 2D semiconductors

Amplified spontaneous emission is a physical phenomenon that entails the amplification of the light spontaneously emitted by excited particles, due to photons of the same frequency triggering further emissions. This phenomenon is central to the functioning of various optoelectronic technologies, including lasers and optical amplifiers (i.e., devices designed to boost the intensity of light).

The excitation of a material with high-energy photons can produce what is known as an electron-hole . This state is characterized by the dense presence of negatively charged particles (i.e., electrons) and positively charged vacancies (i.e., holes).

Researchers at Wuhan University recently observed amplified spontaneous emission originating from degenerate electron-hole plasma in a 2D semiconductor, namely suspended bilayer tungsten disulfide (WS2). Their paper, published in Physical Review Letters, could pave the way for the development of new optoelectronic technologies based on 2D semiconductors.

A new computational method for super-large-scale atomic structures

New theoretical physics research introduces a simulation method of machine-learning-based effective Hamiltonian for super-large-scale atomic structures. This effective Hamiltonian method could simulate much larger structures than the methods based on quantum mechanisms and classical mechanics.

The findings are published in npj Computational Materials under the title, “Active learning of effective Hamiltonian for super-large-scale .” The paper was authored by an international team of physicists, including the University of Arkansas, Nanjing University, and the University of Luxembourg.

In ferroelectrics and dielectrics, there is one kind of structure—mesoscopic structure, which usually has atoms more than millions.

NASA’s Next Mission Could Finally Solve the Mystery of Our Solar System’s Edge

The heliosphere, a cosmic bubble formed by the Sun, protects our solar system from interstellar threats and influences life’s evolution. Despite its vital role, its true shape remains a puzzle, with data from Voyager missions hinting at its complexities. Upcoming interstellar probes aim to uncover more about this mysterious region.

The Sun does more than just warm the Earth, making it habitable for people and animals. It also shapes a vast region of space. This region, known as the heliosphere, extends more than a hundred times the distance between the Sun and Earth, influencing everything within it.

As a star, the Sun constantly emits a flow of charged particles called the solar wind, a stream of energized plasma.