Toggle light / dark theme

Compact optical clock uses quantum interference for improved frequency stability

An atomic clock research team from the National Time Service Center of the Chinese Academy of Sciences has proposed and implemented a compact optical clock based on quantum interference enhanced absorption spectroscopy, which is expected to play an important role in micro-positioning, navigation, timing (μPNT) and other systems.

Inspired by the successful history of the coherent population trapping (CPT)-based chip-scale microwave atomic clock and the booming of optical microcombs, a chip-scale optical clock was also proposed and demonstrated with better frequency stability and accuracy, which is mainly based on two-photon transition of Rubidium atom ensemble.

However, the typically required high cell temperatures (~100 ℃) and laser powers (~10 mW) in such a configuration are not compliant with the advent of a fully miniaturized and optical clock.

Leave a Comment

Lifeboat Foundation respects your privacy! Your email address will not be published.