Toggle light / dark theme

Mice, like humans, compete for territory and mates, becoming more confident in their fighting abilities with each victory. Early on, a brain chemical called dopamine.

Dopamine is a crucial neurotransmitter involved in many important functions in the brain, particularly those related to pleasure, reward, motivation, and motor control. It plays a central role in the brain’s reward system, where it helps reinforce rewarding behaviors by increasing pleasure and satisfaction, making it critical for habit formation and addictive behaviors. Dopamine is also vital for regulating movement, and deficiencies in dopamine production are linked to neurological disorders such as Parkinson’s disease. Additionally, dopamine influences various other functions, including mood regulation, learning, and attention, making it a key focus in studies of both mental health and neurodegenerative diseases.

A new technology developed at MIT enables scientists to label proteins across millions of individual cells in fully intact 3D tissues with unprecedented speed, uniformity, and versatility. Using the technology, the team was able to richly label whole rodent brains and other large tissue samples in a single day.

In their new study in Nature Biotechnology, they also demonstrate that the ability to label proteins with antibodies at the single-cell level across whole brains can reveal insights left hidden by other widely used labeling methods.

Profiling the proteins that cells are making is a staple of studies in biology, neuroscience and related fields because the proteins a cell is expressing at a given moment can reflect the functions the cell is trying to perform or its response to its circumstances, such as disease or treatment.

A study led by scientists at Rutgers University-New Brunswick has shown that specialized cells involved in how the body responds to insulin are activated in the brain after exercise, suggesting that physical activity may directly improve brain function.

The combination problem may, in fact, be a reason to favor a version of panpsychism in which consciousness is fundamental in the form of a continuous, pervasive field, analogous to spacetime. Just as spacetime and gravity have an interactive relationship, consciousness can be thought of as a fundamental “field” that interacts with, and is integral to, matter. We typically don’t think of spacetime as bits and pieces that build on each other (it’s simply everywhere), and I don’t think we should be tempted to think of consciousness, if it is indeed a pervasive field, as divisible into building blocks either. Rather, it makes more sense to talk about a field that contains a range of content —the content depending on the other forces or fields it’s interacting with. In the same way that gravity is a two-way street—matter warps spacetime and the shape of spacetime determines how matter moves—a consciousness field would imbue matter with another property, giving rise to the range of content experience d. Under this view, content is divisible, but consciousness isn’t. Therefore, consciousness is also not interacting with itself, as it would be in the act of “combining.” Considering consciousness to be fundamental allows for matter to have a specific internal character everywhere, in all of its various forms.

If consciousness is fundamental, then the questions that prompt the combination problem are potentially the same as all the other questions we might ask about spacetime in which we don’t anticipate this problem. All matter would entail consciousness, and complex systems, such as human brains, would give rise to certain types of content in those locations in spacetime. Even if each individual atom has its own experience, consciousness itself is not necessarily isolated. The matter might be isolated, and therefore the content associated with the consciousness at that location is isolated. But consciousness itself would not be said to be isolated. Again, we can think of consciousness as analogous to spacetime: How it’s affected by matter depends on the matter in question (its mass, in the case of spacetime). Similarly, a consciousness field might be “shaped” by matter in terms of experiential quality or content. And this line of thinking yields interesting questions.

Though the notion of the supernatural has captivated humanity across continents and centuries, the most compelling path to explaining such mysteries may reside in the fundamental operations of nature itself. The premise that there is no realm beyond the natural order underpins the hypothesis that any genuine paranormal or spiritual phenomenon, if it exists, must be quantum in character. On the surface, this sounds audacious: quantum theory is already widely deemed one of the most counterintuitive scientific frameworks, replete with superpositions, entanglement, and the undeniable role of altering reality via measurement. Yet these very features seem to provide the most plausible scaffolding upon which experiences such as extrasensory perception (ESP), clairvoyance, telepathy, contact with disembodied spirits, psychokinesis, reincarnation, or even a continuation of existence in an afterlife, could be built.

Those who have conducted painstaking investigations into alleged parapsychological happenings often begin with the simplest question: Can these events be rigorously documented? The Princeton Engineering Anomalies Research (PEAR) program endeavored to place mind–machine interactions under stringent laboratory conditions for more than two decades, testing whether human intention could alter random-event generators. Their experimental data reported “small but consistent deviations from expected outputs” (Jahn & Dunne, 1987, p. 45). Mainstream critics rightly pointed to the difficulty of reconciling such deviations with known physics. However, these critics also noted that if the data were taken at face value, the underlying mechanism could only be teased out by exploring deeper layers of reality that engage both mind and matter — precisely the realm where quantum theory holds sway.

As we delve further into the annals of psychical research, Dean Radin’s contributions provide an illuminating guide. In The Conscious Universe: The Scientific Truth of Psychic Phenomena, Radin (1997) summarizes meta-analyses across thousands of trials testing telepathy, clairvoyance, and precognition. He concludes that “if psi is real, then we will see small but systematic deviations from chance expectations across many studies” (p. 136). Over and over, this is what he reports. Conventional interpretations falter, but an appeal to quantum processes — whose probabilistic nature might be subtly influenced by consciousness — begins to feel less like arcane speculation and more like a coherent, if daring, hypothesis.

Summary: A new AI model, based on the PV-RNN framework, learns to generalize language and actions in a manner similar to toddlers by integrating vision, proprioception, and language instructions. Unlike large language models (LLMs) that rely on vast datasets, this system uses embodied interactions to achieve compositionality while requiring less data and computational power.

Researchers found the AI’s modular, transparent design helpful for studying how humans acquire cognitive skills like combining language and actions. The model offers insights into developmental neuroscience and could lead to safer, more ethical AI by grounding learning in behavior and transparent decision-making processes.

Like humans, mice will compete over territory and mates, and show increased confidence in their fighting skills the more they win. At first, a brain chemical called dopamine is essential for young males to master this behavior. But as they gain experience, the chemical grows less important in promoting aggression, a new study shows.

Dopamine has been linked to male aggression for decades. How past experiences might influence this relationship, however, had until now been unclear.

In experiments in rodents, a team led by researchers at NYU Langone Health boosted activity in -releasing cells in a part of the brain called the . The findings revealed that in inexperienced male fighters, this led the animals to attack for twice as long as they would have fought naturally. When the cells were blocked, the novice mice would not fight at all.

A new study reveals that people with multiple sclerosis (MS) experience significantly higher rates of mental illness during pregnancy and the first year after childbirth, compared to those without MS.

The findings suggest a critical need for targeted mental health screening and interventions for this group, with depression and anxiety being the most prevalent conditions.

MS and mental health during pregnancy.