Swapping out cells for circuits, it may be possible for the mind to exist digitally.
The Brain with David Eagleman
Posted in neuroscience
Posted in neuroscience
Ground-breaking research at Tel Aviv University successfully eradicated glioblastoma, a deadly form of brain cancer. The researchers achieved the result by developing a strategy based on their finding of two crucial mechanisms in the brain that promote tumor growth and survival: one shields cancer cells from the immune system, while the other provides the energy needed for rapid tumor growth. The research discovered that astrocytes, which are brain cells, regulate both methods, and that when they aren’t there, tumor cells die and are eliminated.
Rita Perelroizen, a Ph.D. student, served as the study’s lead researcher. She collaborated with Professor Eytan Ruppin of the National Institutes of Health (NIH) in the United States and was supervised by Dr. Lior Mayo of the Shmunis School of Biomedicine and Cancer Research and the Sagol School of Neuroscience at Tel Aviv. The study was recently published in the journal Brain and was highlighted with scientific commentary.
In a new study that could improve the therapeutic efficacy of deep-brain stimulation (DBS) for psychiatric disorders such as depression, a team of scientists shows that, when DBS is applied to a specific brain region, it improves patients’ cognitive control over their behavior by increasing the power of a specific low-frequency brain rhythm in their prefrontal cortex.
The findings, published April 4 in Nature Communications, suggest that the increase in “theta” rhythms, readily detectable in EEG recordings, could provide neurosurgeons and psychiatrists with the reliable, objective and rapid feedback they’ve needed to properly fine-tune the placement and “dosage” of DBS electrical stimulation. In Parkinson’s disease, where DBS has been most successful, that kind of feedback is available through a reduction in a patient’s tremors. But for depression or obsessive-compulsive disorder, symptoms can be more subtle, subjective and slowly emergent.
“This is a major step forward for psychiatric brain stimulation,” said Alik Widge, the lead and corresponding author on the paper. Widge began the work while a clinical fellow at the Picower Institute for Learning and Memory at MIT and a research fellow at Massachusetts General Hospital (MGH). He is now an Assistant Professor of Psychiatry at the University of Minnesota Medical School. “This study shows us a specific mechanism of how DBS improves patients’ brain function, which should let us better identify who can benefit and how to optimize their individual treatment.”
Since the infancy of functional magnetic resonance imaging (fMRI) in 1990, people have been fascinated by the potential for brain scans to unlock the mysteries of the human mind, our behaviors and beliefs. Many breathtaking applications for brain scans have been devised, but hype often exceeds what empirical science can deliver. It’s time to ask: What’s the big picture of neuroscience and what are the limitations of brain scans?
The specific aims of any research endeavor depend on who you ask and what funding agency is involved, says Michael Spezio, associate professor of psychology, data science and neuroscience at Scripps College. Some people believe neuroscience has the potential to explain human cognition and behavior as a fully mechanistic process, ultimately debunking an “illusion of free will.” Not all neuroscientists agree that free will is a myth, but it’s a strong current these days. Neuroscience also has applications in finance, artificial intelligence, weapons research and national security.
For other researchers and funders, the specific aim of neuroscience involves focusing on medical imaging, genetics, the study of proteins (proteomics) and the study of neural connections (connectomics). As caring persons who are biological, neurological, physical, social and spiritual, we can use neuroscience to think carefully and understand our humanity and possible ways to escape some of the traps we’ve built for ourselves, says Spezio. Also, brain scans can enhance research into spirituality, mindfulness and theory of mind – the awareness of emotions, values, empathy, beliefs, intentions and mental states to explain or predict others’ behavior.
Post-mortem brains of SuperAgers reveal significantly larger neurons in memory region. SuperAger neurons are even larger than those in individuals 20 to 30 years younger These neurons do not have tau tangles that are a hallmark of Alzheimer’s Larger neurons in the brain’s memory region.
New research from medical scientists at Johns Hopkins University linked abnormally formed proteins in the human brain with the psychiatric illness called schizophrenia, in a significant number of patients. While they’re not yet sure what the connection is, the study said that deformed proteins were found in the brains of many patients who were diagnosed with schizophrenia.
— contents —
~ story ~ infographic: diagram ~ report ~ by definition ~ infographic: chart ~ learning.
Biomechanical interactions, rather than neurons, control the movements of one of the simplest animals. The discovery offers a glimpse into how animal behavior worked before neurons evolved.
Summary: Neurons in the memory-associated entorhinal cortex of super-agers are significantly larger than their cognitively average peers, those with MCI, and even in people up to 30 years younger. Additionally, these neurons contained no signs of Tau, a hallmark of Alzheimer’s disease.
Source: Northwestern University.
Neurons in an area of the brain responsible for memory (known as the entorhinal cortex) were significantly larger in SuperAgers compared to cognitively average peers, individuals with early-stage Alzheimer’s disease and even individuals 20 to 30 years younger than SuperAgers — who are aged 80 years and older, reports a new Northwestern Medicine study.
Based on an analysis of just under half a million records in the UK Biobank, people who drink two to three cups of coffee each day tend to live longer and exhibit less cardiovascular disease compared with those who abstain from the beverage.
While the research doesn’t claim drinking more coffee adds years to your life, it’s nevertheless an intriguing association that scientists are keen to investigate further. It’s also important to weigh the findings against previous studies linking brain shrinkage and an increased risk of dementia with a daily habit of six or more cups of coffee.
“In this large, observational study, ground, instant and decaffeinated coffee were associated with equivalent reductions in the incidence of cardiovascular disease and death from cardiovascular disease or any cause,” says electrophysiologist Peter Kistler, from the Baker Heart and Diabetes Institute in Australia.
Summary: SARS_CoV_2, the virus responsible for COVID-19 infects and replicates in astrocytes, reducing neural viability.
Source: FAPESP
A Brazilian study published in the journal PNAS describes some of the effects infection by SARS-CoV-2 can have on the central nervous system.