Toggle light / dark theme

Serotonin receptor signaling insights may pave way for next-gen mental health drugs

In a discovery that could guide the development of next-generation antidepressants and antipsychotic medications, researchers at the Icahn School of Medicine at Mount Sinai have developed new insights into how a critical brain receptor works at the molecular level and why that matters for mental health treatments.

The study, published in the online issue of Science Advances, focuses on the 5-HT1A , a major player in regulating mood and a common target of both traditional antidepressants and newer therapies such as psychedelics. The paper is titled “Structural determinants of G protein subtype selectivity at the serotonin receptor 5-HT1A.”

Despite its clinical importance, this receptor has remained poorly understood, with many of its molecular and pharmacological properties largely understudied—until now.

The hidden mental health cost of climate distress

A new Stanford-led study sheds light on “an emerging psychological health crisis” that disproportionately affects girls. Published July 30 in The Lancet Planetary Health, the study is among the first to quantify how repeated climate stressors impact the psychological well-being and future outlook of adolescents in low-resource settings.

Researchers from Stanford’s schools of Medicine, Law, and Sustainability partnered with in Bangladesh to survey more than 1,000 teenagers and conduct focus groups across two regions with starkly different flood exposure.

“What we found really lifts the voices of frontline —a group whose perspectives and are so rarely investigated and communicated,” said lead author Liza Goldberg, an incoming Earth system science Ph.D. student in the Stanford Doerr School of Sustainability.

What Can a Cell Remember?

In a provocative study published in Nature Communications late last year, the neuroscientist Nikolay Kukushkin and his mentor Thomas J. Carew at New York University showed that human kidney cells growing in a dish can “remember” patterns of chemical signals when they’re presented at regularly spaced intervals — a memory phenomenon common to all animals, but unseen outside the nervous system until now. Kukushkin is part of a small but enthusiastic cohort of researchers studying “aneural,” or brainless, forms of memory. What does a cell know of itself? So far, their research suggests that the answer to McClintock’s question might be: much more than you think.

Brainless Learning

The prevailing wisdom in neuroscience has long been that memory and learning are consequences of “synaptic plasticity” in the brain. The connections between clusters of neurons simultaneously active during an experience strengthen into networks that remain active even after the experience has passed, perpetuating it as a memory. This phenomenon, expressed by the adage “Neurons that fire together, wire together,” has shaped our understanding of memory for the better part of a century. But if solitary nonneural cells can also remember and learn, then networks of neurons can’t be the whole story.

Potential chemo-induced cognitive changes discovered in cancer survivors

Researchers at The City College of New York have linked chemotherapy treatment to lasting cognitive changes in rats—potentially shedding light, for the first time, on cognitive problems some cancer survivors experience long after treatment ends.

Titled “Chemotherapy treatment alters DNA methylation patterns in the of female rat brain,” the study appears in the journal Scientific Reports.

“Our study explored how chemotherapy affects the brain at the using an ,” said Karen Hubbard, professor of biology in CCNY’s Division of Science, who co-led the study.

Alzheimer’s Gene Therapy Shows Promise in Preserving Cognitive Function

Someone posted this, and reminded me I didn’t Researchers at University of California San Diego School of Medicine have developed a gene therapy for Alzheimer’s disease that could help protect the brain from damage and preserve cognitive function. Unlike existing treatments for Alzheimer’s that target unhealthy protein deposits in the brain, the new approach could help address the root cause of Alzheimer’s disease by influencing the behavior of brain cells themselves.

Alzheimer’s disease affects millions of people around the world and occurs when abnormal proteins build up in the brain, leading to the death of brain cells and declines in cognitive function and memory. While current treatments can manage symptoms of Alzheimer’s, the new gene therapy aims to halt or even reverse disease progression.

Studying mice, the researchers found that delivering the treatment at the symptomatic stage of the disease preserved hippocampal-dependent memory, a critical aspect of cognitive function that is often impaired in Alzheimer’s patients. Compared to healthy mice of the same age, the treated mice also had a similar pattern of gene expression, suggesting that the treatment has the potential to alter the behavior of diseased cells to restore them to a healthier state.


By reprogramming brain cells, a new gene therapy approach for Alzheimer’s developed by UC San Diego researchers could address the root cause of the disease to halt its progression.

Quantum computing occurs naturally in the human brain, study finds

Kurian’s group believes these large tryptophan networks may have evolved to take advantage of their quantum properties. When cells breathe using oxygen—a process called aerobic respiration—they create free radicals, or reactive oxygen species (ROS). These unstable particles can emit high-energy UV photons, which damage DNA and other important molecules.

Tryptophan networks act as natural shields. They absorb this harmful light and re-emit it at lower energies, reducing damage. But thanks to superradiance, they may also perform this protective function much more quickly and efficiently than single molecules could.

Brain imaging may identify patients likely to benefit from anxiety care app

The preliminary study suggested that young people with weaker connections between two involved in both attending to and regulating responses to were more likely to benefit from a self-guided anxiety care app than those with stronger connections.

The study, published in JAMA Network Open, looked at data from a subset of clinical trial participants who agreed to undergo a brain MRI before using the anxiety care app developed by the investigators.

Neuroimaging Findings of CAR T-Cell-Associated NeurotoxicityA Review

This review explores the current literature on brain MRI findings of CAR-T–induced neurotoxicity, highlighting diagnostic capabilities, clinical implications, and emerging trends in advancing imaging modalities.


Chimeric antigen receptor T-cell (CAR-T) therapy has remarkable efficacy in treating refractory hematologic malignancies. However, CAR-T therapy may induce neurotoxic effects in some patients. Common symptoms of neurotoxicity range from early signs such as headache, confusion, delirium, and aphasia to severe manifestations such as seizures, motor weakness, increased intracranial pressure, cerebral edema, and coma. Magnetic resonance imaging (MRI) can offer invaluable insight into resulting abnormalities in the structure, physiology, and function of the central nervous system. This review aims to examine the current literature on brain MRI findings of CAR-T–induced neurotoxicity, elucidating its diagnostic capabilities, clinical implications, and emerging trends in advancing imaging modalities.

The use of artificial intelligence in psychotherapy: development of intelligent therapeutic systems

Both groups showed significant reductions in anxiety levels. The control group receiving traditional therapy had a 45% reduction on the Hamilton scale and a 50% reduction on the Beck scale, compared to 30% and 35% reductions in the chatbot group. While the chatbot provided accessible, immediate support, traditional therapy proved more effective due to the emotional depth and adaptability provided by human therapists. The chatbot was particularly beneficial in crisis settings where access to therapists was limited, proving its value in scalability and availability. However, its emotional engagement was notably lower compared to in-person therapy.

The Friend chatbot offers a scalable, cost-effective solution for psychological support, particularly in crisis situations where traditional therapy may not be accessible. Although traditional therapy remains more effective in reducing anxiety, a hybrid model combining AI support with human interaction could optimize mental health care, especially in underserved areas or during emergencies. Further research is needed to improve AI’s emotional responsiveness and adaptability.


Background The increasing demand for psychotherapy and limited access to specialists underscore the potential of artificial intelligence (AI) in mental health care. This study evaluates the effectiveness of the AI-powered Friend chatbot in providing psychological support during crisis situations, compared to traditional psychotherapy. Methods A randomized controlled trial was conducted with 104 women diagnosed with anxiety disorders in active war zones. Participants were randomly assigned to two groups: the experimental group used the Friend chatbot for daily support, while the control group received 60-minute psychotherapy sessions three times a week. Anxiety levels were assessed using the Hamilton Anxiety Rating Scale and Beck Anxiety Inventory. T-tests were used to analyze the results. Results Both groups showed significant reductions in anxiety levels.

/* */