Toggle light / dark theme

New treatment could reduce brain damage from stroke, study in mice shows

Cambridge scientists have developed and tested a new drug in mice that has the potential to reduce damage to the brain when blood flow is restored following a stroke.

The study, “Local arterial administration of acidified malonate as an adjunct therapy to mechanical thrombectomy in ischemic stroke” was published in Cardiovascular Research.

As many as one in four people will have a stroke during their lifetime. This is when a blood clot prevents oxygen from reaching a part of the brain. The first few hours following a stroke are crucial—the blood clot needs to be removed quickly so that the to the brain can be restored; otherwise, the brain tissue begins to die.

Reduced levels of miRNAs 449 and 34 in sperm of mice and men exposed to early life stress

Many studies have confirmed that exposure to severe stress during childhood has long-lasting negative health effects. One of the most convincing has been the Adverse Childhood Experience (ACE) Study, which is supported by over 100 publications1. It was initiated by collaboration between the Centers for Disease Control and Prevention and Kaiser Permanente’s Department of Preventive Medicine. It led to the ACE Study Questionnaire (see http://www.acestudy.org/index.html), where anonymous yes or no answers to 10 questions involving participant’s experiences at home until the age of 18 are quantified. Five are personal questions about physical abuse, verbal abuse, sexual abuse, physical neglect, and emotional neglect. Five relate to other family members: an alcoholic parent, a victim of domestic violence, incarceration, diagnosed with a mental illness, and the disappearance of a parent through divorce, death, or abandonment. A score ≥4 puts one at serious risk for future mental and physical health problems, such as a 4.6-fold increased rate of depression2 and a ~30-fold increased rate of suicidal ideation and attempts in adults3. Remarkably, 10% of the population reports scores of ≥4.

There is a growing appreciation that clinicians should be aware of patients’ traumatic experiences, particularly when young, because they add to their risk for physical and psychiatric maladies4,5. Moreover, sensitivity to PTSD has been shown to correlate with ACE score6,7,8 implying it can be used as a screening tool to identify people who should take extra precaution to avoid trauma. However, some may not answer the ACE questionnaire accurately due to suppressed memories or because of the sensitive nature of many of the questions, particularly in settings that do not allow anonymity. Thus, discovery of unbiased markers for early trauma could complement ACE surveys in some clinical settings.

Moreover, offspring of those exposed to early life trauma are at elevated risk for psychiatric disorders9. This phenomena has also been demonstrated in rodents10,11. For example, transmission of the effects of stress across generations has been observed after exposing male mice to a wide variety of psychological stresses, including social defeat12, chronic physical restraint13, multiple variable perturbations in adults14, social instability beginning in adolescence15, and early maternal separation16. While some evidence in mice points to environmentally induced changes in sperm DNA methylation as a mechanism for transmission of stress phenotypes16, the best evidence to date supports small RNA species in sperm. Recent studies show that sperm contain various types of cytoplasmic RNAs (e.g., mRNAs, miRNAs, siRNAs, lnc-RNAs, piwi-interacting RNAs, and fragments of tRNAs) that have the potential to contribute to embryo development17,18,19.

An integrated single-nucleus and spatial transcriptomics atlas reveals the molecular landscape of the human hippocampus

The topographical organization of cells in the hippocampus reflects its ability to regulate mood and cognition. Here the authors generate a spatially resolved gene expression map in the human hippocampus to enable cross-species and functional interpretation.

Oral Microbiota Transmission Partially Mediates Depression and Anxiety in Newlywed Couples

Oral microbiota dysbiosis and altered salivary cortisol levels have been linked to depression and anxiety. Given that bacterial transmission can occur between spouses, this study aimed to investigate whether the transmission of oral microbiota between newlywed couples mediates symptoms of depression and anxiety.

Brain scans reveal parahippocampal cortex thinning in those with depression and neuroticism

Depression is a mental health disorder characterized by a recurrent or persistent sadness and a loss of interest in activities that were previously deemed pleasurable, sometimes accompanied by changes in sleep, appetite and perceived energy levels. One of the most debilitating types of depression is major depressive disorder (MDD), which entails a pervasive low mood for a prolonged time, which in turn adversely impacts people’s ability to engage in daily activities.

As is estimated to be experienced by approximately 3.5% of people worldwide, understanding its neurophysiological underpinnings and its characteristic brain signatures is of utmost importance. Past studies have linked depression, particularly MDD, to structural changes in a brain region known as the medial temporal lobe, which has been implicated in the formation and retrieval of memories, as well as in emotional processing and decision-making.

Researchers at Aachen University and Forschungszentrum Jülich GmbH recently carried out a study aimed at exploring the link between the structure of a specific part of the MTL, namely the parahippocampal cortex (PHC), and MDD. Their paper, published in Translational Psychiatry, suggests that the thickness of the PHC is an indicator of both MDD and , a psychological trait marked by a pronounced tendency to feel (e.g., anxiety, guilt, anger, etc.).

Anticipation of a virtual infectious pathogen is enough to prompt real biological defenses

Researchers led by the University of Geneva and École Polytechnique Fédérale de Lausanne report that neural anticipation of virtual infection triggers an immune response through activation of innate lymphoid cells.

Innate lymphoid cells (ILCs) are a type of immune cell crucial for early immune responses. They do not rely on antigen recognition like adaptive immune cells but respond quickly and effectively to various inflammatory signals and pathogen-associated cues, playing an essential role in early defense.

Protecting the body from pathogens typically involves a multitude of responses after actual contact. An anticipatory biological immune reaction to an infection had not been previously demonstrated.

Study finds infant anesthesia exposure accelerates visual brain activity patterns

New research published in Proceedings of the National Academy of Sciences (PNAS) finds that prolonged and/or repeated exposure to gamma-aminobutyric acid (GABA) anesthetic agents (sevoflurane, propofol) for infants in the first two months of life resulted in an accelerated maturation of brain electrical activity patterns evoked by visual stimuli when recorded at 2–5 months of age, compared to infants who did not have early general anesthesia exposure.

These findings may suggest the use of non-GABA-active anesthetics for the newborn age-range. To address such concerns, a large multicenter clinical trial (called TREX) is currently in progress using a combination of agents in order to minimize exposure to GABA-active anesthetics.

The paper is the fourth in a series emerging from a prospective longitudinal study known as the General Anesthesia and Brain Activity (GABA) Study, led by researchers at Boston Children’s Hospital and Northeastern University.

How the brain shapes what we feel in real time: A new mechanism for modulating sensory signals

The cerebral cortex processes sensory information via a complex network of neural connections. How are these signals modulated to refine perception? A team from the University of Geneva (UNIGE) has identified a mechanism by which certain thalamic projections target neurons and modify their excitability.

The work, published in Nature Communications, reveals a previously unknown form of communication between two regions of the brain, the thalamus and the . It could explain why the same sensory stimulus does not always elicit the same sensation and open up new avenues for understanding certain .

The same sensory stimulus can be perceived clearly at times, and remain vague at others. This phenomenon can be explained by the way the brain integrates stimuli. For example, touching an object outside our field of vision may be enough to identify it…or not.

New computer program mimics cell behavior for faster medical discoveries

Using mathematical analysis of patterns of human and animal cell behavior, scientists say they have developed a computer program that mimics the behavior of such cells in any part of the body. Led by investigators at Indiana University, Johns Hopkins Medicine, the University of Maryland School of Medicine and Oregon Health & Science University, the new work was designed to advance ways of testing and predicting biological processes, drug responses and other cell dynamics before undertaking more costly experiments with live cells.

With further work on the program, the researchers say it could eventually serve as a “digital twin” for testing any drug’s effect on cancer or other conditions, gene environment interactions during brain development, or any number of dynamic cellular molecular processes in people where such studies are not possible.

Funded primarily by the Jayne Koskinas Ted Giovanis Foundation and the National Institutes of Health, and leveraging prior knowledge and data funded by the Lustgarten Foundation and National Foundation for Cancer Research, the new study and examples of cell simulations are described online July 25 in the journal Cell.

/* */