Toggle light / dark theme

A study from Tübingen University and the German Center for Diabetes Research reveals that the brain plays a crucial role in obesity and type 2 diabetes development. It shows that even a brief period of consuming high-calorie processed foods can significantly alter brain insulin sensitivity, a key factor in weight gain and metabolic disorders. The research demonstrated that insulin’s appetite-suppressing effect in the brain diminishes after a short-term high-calorie diet, leading to insulin resistance. These effects were observed in healthy participants, suggesting that dietary habits could influence brain function before any significant weight gain occurs. Further research is needed to understand the brain’s role in these conditions.


The number of obese persons has grown significantly in recent decades, which presents significant difficulties for those who are impacted, healthcare systems, and those who provide treatment. The hormone insulin plays a key role in the development of obesity. Up until recently, there have been numerous signs indicating insulin causes neurodegenerative and metabolic disorders, especially in the brain. A recent study by the University Hospital of Tübingen, the German Center for Diabetes Research (DZD), and Helmholtz Munich offers intriguing new insights into the origins of type 2 diabetes and obesity as well as the brain’s function as a critical control center.

Obesity has only been officially recognized as a disease in Germany since 2020, despite the fact that it has long been known to cause a number of illnesses, including diabetes, heart attacks, and even cancer. The World Health Organization has already declared obesity to be an epidemic, affecting over one billion individuals globally and almost 16 million in Germany alone. A body mass index of 30 or more is considered obese, and a poor diet and insufficient exercise are frequently cited as the causes of this chronic illness. However, the mechanisms in the body that lead to obesity and cause the disease are more complex.

Obesity and the role of insulin in the brain

Unhealthy body fat distribution and chronic weight gain are linked to the brain’s sensitivity to insulin. What specific functions does insulin perform in the brain, and how does it affect individuals of normal weight? In their study, Prof. Dr. Stephanie Kullmann and her colleagues at the Tübingen University Hospital for Diabetology, Endocrinology, and Nephrology found the answer to this query. “Our findings demonstrate for the first time that even a brief consumption of highly processed, unhealthy foods (such as chocolate bars and potato chips) causes a significant alteration in the brain of healthy individuals, which may be the initial cause of obesity and type 2 diabetes,” says Prof. Kullmann, the study’s leader. In a healthy state, insulin has an appetite-suppressing effect in the brain. However, in people with obesity in particular, insulin no longer regulates eating behavior properly, resulting in insulin resistance.

Basically mushrooms can cure all major illnesses all over the human body and brain. If all the pharmaceutical companies got into business with Chinese medicine which has used mushrooms of all types we essentially have a no side effect system of 100 percent healing. Even the basic food pyramid has show essentially to prove beneficial to humans more than medicines. Also essentially nanotransfection for people that have lost limbs or lost any body part could in the future regenerate limbs similar to wolverine like in the marvel comics but at a slower pace but would heal anything while the mushrooms keep one well and fed. A lot of the American studies are a stop gap measure while mushrooms can cure things slowly but to 100 percent. Along with healthy eating and nanotransfection one could have all they need for any regeneration in the far future. In the future this technology and food could essentially allow for minimal down time healing inside and the foods would fuel the body. It could be put on a smartphone where even trillions of dollars would be saved getting doctor treatments down to a dollar or less for entire body scans and healing. It would be the first step towards Ironman but using the human body to heal itself and the foods to fuel regeneration.


The WHO has published the first list of priority fungal pathogens, which affect more than 300 million people and kill at least 1.5 million people every year. However, funding to control this scourge is less than 1.5% of that devoted to infectious diseases.

Researchers have mapped the long-range synaptic connections involved in vocal learning in zebra finches, uncovering new details about how the brain organizes learned vocalizations such as birdsong.

The study, published as a Reviewed Preprint in eLife, is described by the editors as having fundamental significance and compelling evidence clarifying how four distinct inputs to a specific region of the brain act on three distinct cell types to facilitate the learning and production of birdsong.

Understanding how the brain integrates sensory and motor information to guide learned vocalizations is crucial for studying both birdsong and human speech. The courtship song of male is a well-studied example of a naturally learned behavior, and is controlled by a set of interconnected forebrain regions in the dorsal ventricular ridge (DVR)—the avian equivalent of the mammalian neocortex.

I think Paul may have posted this already, if so here is some more information from a site about drug repurposng. Its really cool.

Click the video above to watch a story that ran on CBS Evening News about leucovorin for ASD.

Every Cure is excited to highlight the potential role that leucovorin (folinic acid) may play in improving verbal communication in some individuals with autism spectrum disorder (ASD) who have speech challenges and certain antibodies that cause a vitamin deficiency in the brain. As a nonprofit research organization committed to identifying and elevating potential repurposed treatments, we’ve summarized information about this promising drug repurposing opportunity below.

A vitamin deficiency may contribute to speech challenges in some individuals with ASD.

A new study published in Cell Reports reveals a breakthrough discovery linking genetic variants in the gene ITSN1 to a significantly elevated risk of Parkinson’s disease, a neurodegenerative condition that affects nearly 2% of adults older than 65 years.

These findings were subsequently validated across three independent cohorts comprising more than 8,000 cases and 400,000 controls. Importantly, ITSN1 carriers trended toward earlier age of disease onset.

ITSN1 plays an important role in how neurons send messages to each other – a process called synaptic transmission – making it particularly relevant to Parkinson’s disease, a condition in which disruption of nerve signals leads to the typical symptoms of impaired gait and balance, tremors and rigidity. “We also showed in fruit flies that reducing ITSN1 levels worsens Parkinson’s-like features, including the ability to climb. We plan to extend these investigations to stem cell and mouse models,” the author said.

Interestingly, previous studies have recently implicated similar ITSN1 mutations in autism spectrum disorder (ASD). Other emerging data also have suggested an association between ASD and Parkinson’s disease, indicating that people with ASD are three times more likely to develop parkinsonism.

The body you inhabit is made up of lots of moving parts that need to communicate with each other.

Some of this communication – in the nervous system, for example – takes the form of bioelectrical signals that propagate through the body to trigger the appropriate response.

Now, US researchers have discovered that the epithelial cells that line our skin and organs are able to signal the same way to communicate peril. They just use a long, slow ‘scream’, rather than the rapid-fire communication of neurons.

Brain implants hold immense promise for restoring function in patients with paralysis, epilepsy and other neurological disorders. But a team of researchers at Case Western Reserve University has discovered that bacteria can invade the brain after a medical device is implanted, contributing to inflammation and reducing the device’s long-term effectiveness.

The research, published in Nature Communications, could improve the long-term success of brain implants now that a target has been identified to address.

“Understanding the role of bacteria in implant performance and brain health could revolutionize how these devices are designed and maintained,” said Jeff Capadona, Case Western Reserve’s vice provost for innovation, the Donnell Institute Professor of Biomedical Engineering and senior research career scientist at the Louis Stokes Cleveland VA Medical Center.

Convergent engagement of neural and computational sciences and technologies are reciprocally enabling rapid developments in current and near-future military and intelligence operations. In this podcast, Prof. James Giordano of Georgetown University will provide an overview of how these scientific and technological fields can be — and are being — leveraged for non-kinetic and kinetic what has become known as cognitive warfare; and will describe key issues in this rapidly evolving operational domain.

James Giordano PhD, is the Pellegrino Center Professor in the Departments of Neurology and Biochemistry; Chief of the Neuroethics Studies Program; Co-director of the Project in Brain Sciences and Global Health Law and Policy; and Chair of the Subprogram in Military Medical Ethics at Georgetown University Medical Center, Washington DC. Professor Giordano is Senior Bioethicist of the Defense Medical Ethics Center, and Adjunct Professor of Psychiatry at the Uniformed Services University of Health Sciences; Distinguished Stockdale Fellow in Science, Technology, and Ethics at the United States Naval Academy; Senior Science Advisory Fellow of the SMA Branch, Joint Staff, Pentagon; Non-resident Fellow of the Simon Center for the Military Ethic at the US Military Academy, West Point; Distinguished Visiting Professor of Biomedical Sciences, Health Promotions, and Ethics at the Coburg University of Applied Sciences, Coburg, GER; Chair Emeritus of the Neuroethics Project of the IEEE Brain Initiative; and serves as Director of the Institute for Biodefense Research, a federally funded Washington DC think tank dedicated to addressing emerging issues at the intersection of science, technology and national defense. He previously served as Donovan Group Senior Fellow, US Special Operations Command; member of the Neuroethics, Legal, and Social Issues Advisory Panel of the Defense Advanced Research Projects Agency (DARPA); and Task Leader of the Working Group on Dual-Use of the EU-Human Brain Project. Prof. Giordano is the author of over 350 peer-reviewed publications, 9 books and 50governmental reports on science, technology, and biosecurity, and is an elected member of the European Academy of Science and Arts, a Fellow of the Royal Society of Medicine (UK), and a Fulbright Professorial Fellow. A former US Naval officer, he was winged as an aerospace physiologist, and served with the US Navy and Marine Corps.

Originally released December 2023._ In today’s episode, host Luisa Rodriguez speaks to Nita Farahany — professor of law and philosophy at Duke Law School — about applications of cutting-edge neurotechnology.

They cover:
• How close we are to actual mind reading.
• How hacking neural interfaces could cure depression.
• How companies might use neural data in the workplace — like tracking how productive you are, or using your emotional states against you in negotiations.
• How close we are to being able to unlock our phones by singing a song in our heads.
• How neurodata has been used for interrogations, and even criminal prosecutions.
• The possibility of linking brains to the point where you could experience exactly the same thing as another person.
• Military applications of this tech, including the possibility of one soldier controlling swarms of drones with their mind.
• And plenty more.

In this episode:
• Luisa’s intro [00:00:00]
• Applications of new neurotechnology and security and surveillance [00:04:25]
• Controlling swarms of drones [00:12:34]
• Brain-to-brain communication [00:20:18]
• Identifying targets subconsciously [00:33:08]
• Neuroweapons [00:37:11]
• Neurodata and mental privacy [00:44:53]
• Neurodata in criminal cases [00:58:30]
• Effects in the workplace [01:05:45]
• Rapid advances [01:18:03]
• Regulation and cognitive rights [01:24:04]
• Brain-computer interfaces and cognitive enhancement [01:26:24]
• The risks of getting really deep into someone’s brain [01:41:52]
• Best-case and worst-case scenarios [01:49:00]
• Current work in this space [01:51:03]
• Watching kids grow up [01:57:03]

The 80,000 Hours Podcast features unusually in-depth conversations about the world’s most pressing problems and what you can do to solve them.

Learn more, read the summary and find the full transcript on the 80,000 Hours website:

Nita Farahany on the neurotechnology already being used to convict criminals and manipulate workers