Toggle light / dark theme

Association Between Choroid Plexus Morphological Alterations, Alzheimer Pathologies, and Cognitive ImpairmentA Longitudinal Study

Question What are the main predictors for high health care costs among patients with head and neck cancer?

Findings In this population-based cohort study, advanced cancer stage and receiving multiple treatment modalities were the strongest predictors of high health care costs. Female sex, older age, and lower socioeconomic status were associated with an increased likelihood for high health care costs, although with a weaker effect size.

Meaning Future research should focus on evaluating screening strategies and early diagnosis to assess their potential effects on cost reduction and improved outcomes for patients with head and neck cancer.

Molecular Switch for Repairing Central Nervous System disorders

A molecular switch has the ability to turn on a substance in animals that repairs neurological damage in disorders such as multiple sclerosis (MS), Mayo Clinic researchers discovered. The early research in animal models could advance an already approved Food and Drug Administration therapy and also could lead to new strategies for treating diseases of the central nervous system.

Research by Isobel Scarisbrick, Ph.D., published in the Journal of Neuroscience finds that by genetically switching off a receptor activated by blood proteins, named Protease Activated Receptor 1 (PAR1), the body switches on regeneration of myelin, a fatty substance that coats and protects nerves.

“Myelin regeneration holds tremendous potential to improve function. We showed when we block the PAR1 receptor, neurological healing is much better and happens more quickly. In many cases, the nervous system does have a good capacity for innate repair,” says Dr. Scarisbrick, principal investigator and senior author. “This sets the stage for development of new clinically relevant myelin regeneration strategies.”

Neurons Use a Fast Structural Signal to Stabilize Communication

Researchers have uncovered a fast, structural mechanism that allows neurons to stabilize communication when synaptic function is disrupted.

Instead of relying on electrical activity, the brain uses physical rearrangements of postsynaptic receptors to signal the sending neuron to boost neurotransmitter release.

This rapid correction restores balance within milliseconds, ensuring that circuits supporting movement, learning, and memory remain functional.

The findings shed new light on how the brain maintains stability when communication falters.


Neurons can rapidly rebalance their communication using a structural signal rather than electrical activity, overturning long-held assumptions about how synapses maintain stability.

When neural spikes break time’s symmetry: Linking the information-theoretic cost of brain activity to behavior

What if we could peer into the brain and watch how it organizes information as we act, perceive, or make decisions? A new study has introduced a method that does exactly this—not just by looking at fine-grained neuronal spiking activity, but by characterizing its collective dynamics using principles from thermodynamics.

A team from Kyoto University and Hokkaido University developed a new statistical framework capable of tracing directional, nonequilibrium neural dynamics directly from large-scale spike recordings, enabling them to show how neurons dissipate entropy as they compute. Their findings reveal how neurons dynamically reshape their interactions during behavior and how the brain’s internal “temporal asymmetry” shifts during task engagement, shedding light on how efficient computation arises. The work is published in Nature Communications.

AI helps explain how covert attention works and uncovers new neuron types

Shifting focus on a visual scene without moving our eyes—think driving, or reading a room for the reaction to your joke—is a behavior known as covert attention. We do it all the time, but little is known about its neurophysiological foundation.

Now, using convolutional neural networks (CNNs), UC Santa Barbara researchers Sudhanshu Srivastava, Miguel Eckstein and William Wang have uncovered the underpinnings of covert attention, and in the process, have found new, emergent neuron types, which they confirmed in real life using data from mouse brain studies.

“This is a clear case of AI advancing neuroscience, cognitive sciences and psychology,” said Srivastava, a former graduate student in the lab of Eckstein, now a postdoctoral researcher at UC San Diego.

Role of brain’s immune system in social withdrawal during sickness

“I just can’t make it tonight. You have fun without me.” Across much of the animal kingdom, when infection strikes, social contact shuts down. A new study details how the immune and central nervous systems implement this sickness behavior.

It makes perfect sense that when we’re battling an infection, we lose our desire to be around others. That protects them from getting sick and lets us get much needed rest. What hasn’t been as clear is how this behavior change happens.

In the research published in Cell, scientists used multiple methods to demonstrate causally that when the immune system cytokine interleukin-1 beta (IL-1β) reaches the IL-1 receptor 1 (IL-1R1) on neurons in a brain region called the dorsal raphe nucleus, that activates connections with the intermediate lateral septum to shut down social behavior.

“Our findings show that social isolation following immune challenge is self-imposed and driven by an active neural process, rather than a secondary consequence of physiological symptoms of sickness, such as lethargy,” said study co-senior author.

Neurons use physical signals, not electricity, to stabilize communication

Every movement you make and every memory you form depends on precise communication between neurons. When that communication is disrupted, the brain must rapidly rebalance its internal signaling to keep circuits functioning properly. New research from the USC Dornsife College of Letters, Arts and Sciences shows that neurons can stabilize their signaling using a fast, physical mechanism—not the electrical activity scientists long assumed was required.

The discovery, published recently in Proceedings of the National Academy of Sciences, reveals a system that doesn’t depend on the flow of charged particles to maintain signaling when part of a synapse—the junction between neurons—suddenly stops working.

Maintaining this balance between neurons is essential for muscle control, learning and overall brain health. Failure to maintain this “homeostasis” has been linked to neurological conditions such as epilepsy and autism.

/* */