Toggle light / dark theme

Researchers at Washington University School of Medicine in St. Louis have enrolled the first participants in an international clinical trial designed to prevent Alzheimer’s.

Alzheimer’s disease is a progressive neurological disorder that primarily affects older adults, leading to memory loss, cognitive decline, and behavioral changes. It is the most common cause of dementia. The disease is characterized by the buildup of amyloid plaques and tau tangles in the brain, which disrupt cell function and communication. There is currently no cure, and treatments focus on managing symptoms and improving quality of life.

A new study suggests that creativity maps onto a common brain circuit and that injury and neurological disease have the potential to unleash creativity. Researchers analyzed 857 participants across 36 fMRI brain imaging studies to identify a common brain circuit for creativity.

Two studies published in the latest issue of Science have revealed that birds, reptiles, and mammals have developed complex brain circuits independently, despite sharing a common ancestor. These findings challenge the traditional view of brain evolution and demonstrate that, while comparable brain functions exist among these groups, embryonic formation mechanisms and cell types have followed divergent evolutionary trajectories.

The pallium is the region where the neocortex forms in mammals, the part responsible for cognitive and complex functions that most distinguishes humans from other species. The pallium has traditionally been considered a comparable structure among mammals, birds, and reptiles, varying only in complexity levels. It was assumed that this region housed similar neuronal types, with equivalent circuits for sensory and cognitive processing.

Previous studies had identified the presence of shared excitatory and , as well as general connectivity patterns suggesting a similar evolutionary path in these vertebrate species.

A study led by Prof. Li Hai from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has revealed that the balance between habitual and goal-directed decision-making strategies is influenced by the availability of working memory resources.

The findings, published in the Journal of Cognitive Neuroscience, provide a new framework for understanding how sequential decisions are made.

Everyday decisions often involve a series of choices aimed at reaching a goal-whether selecting a restaurant or deciding on the route. People vary in how they make decisions: some rely on habits, while others adjust based on new information and changing goals.

Three studies at the University of Zurich demonstrate that hypnosis alters activity in the large-scale functional networks of the brain. It also affects the neurochemical milieu of specific brain areas.

Hypnosis has so far been something of a black box from the scientific perspective. Up to now, we have not had the data to prove whether hypnosis really is an extraordinary state of human consciousness, or simply in the subject’s imagination. Yet it remains a topic of fascination for many.

A well-known women’s magazine recently dedicated an entire dossier to hypnosis. And now and again we’ll hear of a remarkable hypnosis success story. For example, in 2018 at the Hirslanden Klinik St. Anna in Lucerne, a 45-year-old man had a metal plate removed from his lower arm under hypnosis only, without any anesthetic or . Much to the amazement of the surgical team, the man did not experience any significant pain either during or after the operation, as the Swiss public broadcaster SRF Puls health magazine program reported on 17 September of that year.

Summary: New research provides direct evidence that the gut microbiome communicates with the brain through the vagus nerve. Using germ-free mice, scientists observed significantly reduced vagal nerve activity, which returned to normal after introducing gut bacteria.

When antibiotics were used to eliminate bacteria in normal mice, vagal activity dropped but was restored when microbiome-derived intestinal fluids were reintroduced. Specific metabolites, including short-chain fatty acids and bile acids, were identified as key activators of vagal neurons.

These signals extended to the brainstem, confirming a clear gut-to-brain pathway. The findings advance understanding of the gut-brain axis and may lead to new treatments for neurological and gastrointestinal disorders.

Researchers at Washington University School of Medicine in St. Louis have conducted a longitudinal study on an individual carrying the presenilin 2 (PSEN2) p. Asn141Ile mutation, a genetic variant known to cause dominantly inherited Alzheimer’s disease (DIAD). The high risk individual, despite being 18 years past the expected age of clinical onset, has remained cognitively intact. Researchers investigated genetic, neuroimaging, and biomarker data to understand potential protective mechanisms.

Unlike typical DIAD progression, in this case was confined to the occipital lobe without spreading, suggesting a possible explanation for the lack of cognitive decline.

DIAD results from highly penetrant mutations in (APP), presenilin 1 (PSEN1), or PSEN2, which lead to abnormal amyloid-β processing and early-onset Alzheimer’s disease. The Dominantly Inherited Alzheimer Network (DIAN) was established to track DIAD mutation carriers and assess clinical, cognitive, and biomarker changes over time.

The default mode network (DMN) is a set of interconnected brain regions known to be most active when humans are awake but not engaged in physical activities, such as relaxing, resting or daydreaming. This brain network has been found to support a variety of mental functions, including introspection, memories of past experiences and the ability to understand others (i.e., social cognitions).

The DMN includes four main brain regions: the (mPFC), the (PCC), the angular gyrus and the hippocampus. While several studies have explored the function of this network, its anatomical structure and contribution to information processing are not fully understood.

Researchers at McGill University, Forschungszentrum Jülich and other institutes recently carried out a study aimed at better understanding the anatomy of the DMN, specifically examining the organization of neurons in the tissue of its connected brain regions, which is known as cytoarchitecture. Their findings, published in Nature Neuroscience, offer new indications that the DMN has a widespread influence on the human brain and its associated cognitive (i.e., mental) functions.