Toggle light / dark theme

Provoking symptoms before brain stimulation shows promise for treating OCD and nicotine dependence

A new study published in JAMA Psychiatry makes the case that symptom provocation may significantly improve the clinical effectiveness of repetitive transcranial magnetic stimulation (rTMS), a noninvasive brain stimulation method used to treat depression, obsessive-compulsive disorder (OCD) and nicotine dependence.

The study was conceptualized, designed and supervised by Heather Burrell Ward, MD, assistant professor of Psychiatry and Behavioral Sciences and director of Neuromodulation Research, in collaboration with Simon Vandekar, Ph.D., associate professor of Biostatistics and Daniel Bello and Megan Jones, two students in their respective labs.

This is the first large-scale meta-analysis to examine whether deliberately triggering symptoms immediately before administering rTMS enhances treatment outcomes.

How the brain distinguishes between ambiguous hypotheses

When navigating a place that we’re only somewhat familiar with, we often rely on unique landmarks to help make our way. However, if we’re looking for an office in a brick building, and there are many brick buildings along our route, we might use a rule like looking for the second building on a street, rather than relying on distinguishing the building itself.

Until that ambiguity is resolved, we must hold in mind that there are multiple possibilities (or hypotheses) for where we are in relation to our destination. In a study of , MIT neuroscientists have now discovered that these hypotheses are explicitly represented in the brain by distinct neural activity patterns.

This is the first time that neural activity patterns that encode simultaneous hypotheses have been seen in the brain. The researchers found that these representations, which were observed in the brain’s retrosplenial cortex (RSC), not only encode hypotheses but also could be used by the animals to choose the correct way to go.

Brain mechanisms that distinguish imagination from reality discovered

Areas of the brain that help a person differentiate between what is real and what is imaginary have been uncovered in a new study led by UCL researchers.

The research, published in Neuron, found that a region in the brain known as the —located behind one’s temples, on the underside of the brain’s —is involved in helping the brain to determine whether what we see is from the external world or generated by our imagination.

The researchers hope that their findings will increase understanding of the cognitive processes that go awry when someone has difficulty judging what is real and what is not, such as in schizophrenia, and could eventually lead to advancement in diagnosing and treating these conditions.

Multiway Systems as Models to Understand Mind and Universe — a Conversation with Stephen Wolfram

Our earliest models of reality were expressed as static structures and geometry, until mathematicians of the 16th century came up with differential algebra, a framework which allowed us to capture aspects of the world as a dynamical system. The 20th century introduced the concept of computation, and we began to model the world through state transitions. Stephen Wolfram suggests that we may be about to enter a new paradigm: multicomputation. At the core of multicomputation is the non-deterministic Turing machine, one of the more arcane ideas of 20th century computer science. Unlike a deterministic Turing machine, it does not just transition from one state to the next, but to all possible states simultaneously, resulting in structures that emerge over the branching and merging of causal paths.

Stephen Wolfram studies the resulting multiway systems as a model for foundational physics. Multiway systems can also be used as an abstraction to understand biological and social processes, economic dynamics, and model-building itself.

In this conversation, we want to explore whether mental processes can be understood as multiway systems, and what the multicomputational perspective might imply for memory, perception, decision making and consciousness.

About the Guest: Stephen Wolfram is one of the most interesting and least boring thinkers of our time, well known for his unique contributions to computer science, theoretical physics and the philosophy of computation. Among other things, Stephen is the creator of the Wolfram Language (also known as Mathematica), the knowledge engine Wolfram|Alpha, the author of the books A New Kind of Science and A Project to Find the Fundamental Theory of Physics, and the founder and CEO of Wolfram Research.

We anticipate that this will be an intellectually fascinating discussion; please consider reading some of the following articles ahead of time:

The Concept of the Ruliad: https://writings.stephenwolfram.com/2021/11/the-concept-of-the-ruliad/

New Research Reveals the Brain Learns Differently Than We Thought

Research provides new insights into how the brain forms habits and explains why they can be so difficult to break. Neuroscientists at the Sainsbury Wellcome Centre (SWC) at UCL have discovered that the brain uses two distinct systems to learn through trial and error. This is the first time a seco

Potential new treatment for Alzheimer’s disease, other neurodegenerative conditions

Drug developed by Case Western Reserve University researchers found to protect ‘guardian of the brain’ Worldwide, more than 55 million people suffer from dementia caused by Alzheimer’s Disease (AD) and other conditions that destroy cells in the brain and nervous system. While there is no treatment to control or manage these neurodegenerative conditions, investigators at Case Western Reserve University, University Hospitals and the Louis Stokes Cleveland VA Medical Center have identified a new and promising drug to treat AD. The […]

Do neurons transmit light?

“Scientists have shown that there is ultra-weak photon emission in the brain, but no one understands why the light is there.”

If light is at play and scientists can understand why, it could have major implications for medically treating brain diseases and drastically change the way physicians heal the brain. But measuring optical transport between neurons would be no easy task.

Our brain and nerves rely on incredibly fast electrical signals to communicate, a process long understood to involve tiny bursts of electricity called action potentials that travel along nerve fibers. But scientists are now exploring whether something else might also be part of this picture: light.

Yes—light, or more specifically, photons. Some researchers have suggested that nerves might not only use electrical impulses but could also send signals using photons, the same particles that make up visible light. This idea is based on the possibility that the fatty coating around nerves, called the myelin sheath, could act like an optical fiber—just like the cables used to carry internet signals using light.

In earlier work, the researchers behind this new study proposed that light might actually be generated in specific parts of the nerve called nodes of Ranvier, which are tiny gaps in the myelin sheath that help boost the electrical signal. Now, they’ve gone a step further: using a special photographic technique involving silver ions, they’ve found physical evidence of photons being emitted from these nodes during nerve activity.

Their experiments suggest that, alongside the familiar electrical signals, nerves might also be emitting light when they fire—shining a new light, literally and figuratively, on how our nervous system might work.