Toggle light / dark theme

Several Psychiatric Disorders Share The Same Root Cause, Study Shows

Researchers recently discovered that eight different psychiatric conditions share a common genetic basis.

A study published this year pinpointed specific variants among those shared genes and shows how they behave during brain development.

The US team found many of these variants remain active for extended periods, potentially influencing multiple developmental stages – and offering new targets for treatments that could address several disorders at once.

The loser’s brain: How neuroscience controls social behavior

Social hierarchies are everywhere—think of high school dramas, where the athletes are portrayed as the most popular, or large companies, where the CEO makes the important decisions. Such hierarchies aren’t just limited to humans, but span the animal kingdom, with dominant individuals getting faster food access, higher mating priority, and bigger or better territories. While it’s long been thought that winning or losing can influence the position of an individual within a social hierarchy, the brain mechanisms behind these social dynamics have remained a mystery.

In iScience, researchers from the Okinawa Institute of Science and Technology (OIST) investigate the neurological basis of social hierarchy in male mice, pinpointing the neurons they believe crucial in determining these social hierarchy dynamics.

“You may think that being dominant in the is all about , like size. But interestingly, we’ve found that it seems to be a choice, based on ,” said Professor Jeffery Wickens, head of the Neurobiology Research Unit at OIST and co-author on this study. “The involved in these decisions is well conserved between mice and humans, so there are likely useful parallels to be drawn.”

How non-neuronal brain cells communicate to coordinate rewiring of the brain

A study by Dorothy P. Schafer, Ph.D., and Travis E. Faust, Ph.D., at UMass Chan Medical School, explains how two different cell types in the brain—astrocytes and microglia—communicate in response to changes in sensory input to remodel synapses, the connections between neurons.

Published in Cell, these findings are in an emerging area of interest for neurobiologists who want to understand how different cells in the brain interact to rewire the brain.

This novel mechanism has the potential to be targeted by translational scientists hoping to one day prevent synaptic damage incurred during neurodegenerative diseases such as Alzheimer’s or ALS as well as age-related cognitive decline. It may also lead to new insights into neurodevelopmental and psychiatric disorders such as autism and schizophrenia, where the brain’s circuit refinement process may have been compromised during development.

Scientists create ChatGPT-like AI model for neuroscience to build one of the most detailed mouse brain maps to date

In a powerful fusion of AI and neuroscience, researchers at the University of California, San Francisco (UCSF) and Allen Institute designed an AI model that has created one of the most detailed maps of the mouse brain to date, featuring 1,300 regions/subregions.

This new map includes previously uncharted subregions of the brain, opening new avenues for neuroscience exploration. The findings were published in Nature Communications. They offer an unprecedented level of detail and advance our understanding of the brain by allowing researchers to link specific functions, behaviors, and disease states to smaller, more precise cellular regions—providing a roadmap for new hypotheses and experiments about the roles these areas play.

“It’s like going from a map showing only continents and countries to one showing states and cities,” said Bosiljka Tasic, Ph.D., director of molecular genetics at the Allen Institute and one of the study authors.

‘Playing to your strengths’ improves well-being in adult ADHD, new research shows

Adults with ADHD who recognize and regularly use their personal strengths report better well-being, improved quality of life and fewer mental health difficulties, according to a new international study.

During October’s ADHD Awareness Month, which this year focuses on “the many faces of ADHD,” researchers from the University of Bath, King’s College London, and Radboud University Medical Center in the Netherlands have delivered the first large-scale study to quantify psychological strengths in ADHD.

The study, published in Psychological Medicine, compared 200 adults with ADHD and 200 adults without ADHD on how much they identified with 25 positive traits—including creativity, humor, spontaneity and hyperfocus—defined by researchers as “things [they] do well or best.”

/* */