Toggle light / dark theme

Swarm intelligence directs longhorn crazy ants to clear the road ahead for sisters carrying bulky food

Among the tens of thousands of ant species, incredible “intelligent” behaviors like crop culture, animal husbandry, surgery, “piracy,” social distancing, and complex architecture have evolved.

Yet at first sight, the brain of an ant seems hardly capable of such feats: it is about the size of a poppy seed, with only 0.25m to 1m neurons, compared to 86bn for humans.

Now, researchers from Israel and Switzerland have shown how “swarm intelligence” resembling advance planning can nevertheless emerge from the concerted operation of many of these tiny brains. The results are published in Frontiers in Behavioral Neuroscience.

New proposal aims to protect patients with high-risk brain implants

As companies such as Elon Musk’s Neuralink begin human trials of high-risk brain implants, a new proposal calls for a major change in how the U.S. handles injuries caused by the devices.

The article published in Science suggests a “no-fault” compensation program to help harmed by devices like (BCIs)—even when no one is legally at fault.

These devices, which are implanted in the brain to treat serious conditions like epilepsy or paralysis, can offer life-changing benefits. But they also come with serious risks such as seizures, strokes or even death. And when something goes wrong, patients often have no way to get help or compensation.

This 70-year-old doctor is stronger than ever, and here is HOW he achieved his fitness (no, not just through cardio)

Dr. Eric Topol, a 70-year-old cardiologist, challenges conventional aging perceptions by embracing strength training. Abandoning cardio, he discovered that building muscle mass significantly improves health span. His regimen of simple exercises at home led to increased strength, balance, mental focus, and confidence, proving that aging can be a period of renewal, not decline.

Neural maps used to locate rewards may be disrupted in dementia and heightened in addiction

Imagine you’re walking to work when the unspeakable occurs: Your favorite coffee shop—where you stop every day—is closed. You groggily navigate to a newly opened coffee shop a couple blocks away, which, you’re pleased to discover, actually makes quite a good morning brew. Soon, you find yourself looking forward to stopping at the new location instead of the old one.

That switch probably alters more than just your morning routine. Each time you visit that new coffee shop, the experience likely strengthens a neural map marking the positions of rewarding experiences—a map that can guide you back to those experiences even from miles away.

While the existence of a reward map is familiar from previous work, Wu Tsai Neuro researchers working with were surprised to find that the map persists even when mice move many meters away from a treat, and that it updates almost immediately when the of the treat changes.

Stem cell platform aims to recreate brain’s immune system using lab-grown human microglia cells

Microglia are a specialized type of immune cell that accounts for about 10% of all cells within the brain and spinal cord. They function by eliminating infectious microbes, dead cells, and aggregated proteins, as well as soluble antigens that may endanger the brain and, during development, also help shape neural circuits enabling specific brain functions.

When microglia don’t function properly, they can trigger neuroinflammation and fail to clear away damaged cells and harmful protein clumps—such as the neurofibrillary tangles and amyloid plaques seen in Alzheimer’s disease. This contributes to numerous neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s disease, as well as amyotrophic lateral sclerosis (ALS), multiple sclerosis, and other disorders. In fact, neuroinflammation can occur even before proteins start to form pathogenic aggregates and, in turn, accelerates protein aggregation.

Researchers and drug developers aiming to better understand and target microglia functions in the brain are challenged by the fact that human microglia can only be obtained through biopsies, and rodents’ microglia differ from their human counterparts in many critical features. This supply issue prompted them to work on methods to create microglia in the culture dish using stem cells as a starting point. However, to date, this process has remained inefficient, and requires weeks to complete at significant costs.

Tracing brain circuits that tell us when to eat—and when to stop

Scientists know the stomach talks to the brain, but two new studies from Rutgers Health researchers suggest the conversation is really a tug-of-war, with one side urging another bite, the other signaling “enough.”

Together, the papers in Nature Metabolism and Nature Communications trace the first complementary wiring diagram of hunger and satiety in ways that could refine today’s blockbuster weight-loss drugs and blunt their side effects.

One study, led by Zhiping Pang of Robert Wood Johnson Medical School’s Center for NeuroMetabolism, pinpointed a slender bundle of neurons that runs from the hypothalamus to the brainstem.