Toggle light / dark theme

A team of engineers at Georgia Institute of Technology’s Wearable Intelligent Systems and Healthcare Center, working with colleagues affiliated with several institutions in South Korea, has developed a microscale brain–computer interface that is small enough to be placed between hair follicles on a user’s head.

In their paper published in the Proceedings of the National Academy of Sciences, the group describes how they made their interface, how it attaches to other hardware to allow readings to be captured and how well it worked during testing.

Over the past several decades, brain–computer interfaces have been developed that are capable of reading brain waves and responding to them in useful ways. These devices can be used to control a cursor on a computer screen, for example, or to choose buttons to press. Such devices are still in limited use, however, mainly due to their bulky nature. In this new effort, the researchers have developed a sensor so small it can be placed on the scalp between hair follicles.

(Spanish: [sanˈtjaɣo raˈmon i kaˈxal] ; 1 May 1852 – 17 October 1934) [ 1 ] [ 2 ] was a Spanish neuroscientist, pathologist, and histologist specializing in neuroanatomy and the central nervous system. He and Camillo Golgi received the Nobel Prize in Physiology or Medicine in 1906. [ 3 ] Ramón y Cajal was the first Spaniard to win a scientific Nobel Prize. His original investigations of the microscopic structure of the brain made him a pioneer of modern neuroscience.

Babies and young children may breathe and absorb plasticizers called phthalates, flame retardants, and other harmful chemicals from their mattresses while they sleep, according to a pair of studies published by the University of Toronto in Environmental Science & Technology and Environmental Science & Technology Letters. These chemicals are linked to neurological and reproductive problems, asthma, hormone disruption, and cancer.

“Sleep is vital for brain development, particularly for infants and toddlers. However, our research suggests that many mattresses contain chemicals that can harm kids’ brains,” says senior author Miriam Diamond, professor at the University of Toronto.

“This is a wake-up call for manufacturers and policymakers to ensure our children’s beds are safe and support healthy .”

Imagine waking up thirsty at night and having to reach for a glass of water in the dark. Without a clear view, your brain has to estimate where the glass is and where your hand is—a challenge that often leads to imprecise movements. The brain processes two key pieces of information: It needs to know where the hand is and where to move it. But what happens if this information is inaccurate?

Scientists from the Sensorimotor Research Group at the DPZ have investigated this problem of visual uncertainty during movement control in a study with . The research is published in the journal Nature Communications.

In the experiment, the monkeys moved a cursor on a screen by hand, using a kind of joystick. Two types of uncertainty were investigated. In target uncertainty, the target of the movement was represented by several scattered objects, so that it remained unclear where exactly the target was located. In the case of uncertainty, the cursor was replaced by several scattered, small objects so that it remained unclear exactly where the user’s own hand was located.

Although air pollution is associated with worse cognitive performance, whether these relationships differ by cognitive domain and which sources of air pollution are particularly detrimental to cognition remains understudied. This study examined associations between cognitive scores across three domains in older adults and 8–10 years of exposure to air pollutants (NO2, total PM2.5, and PM2.5 from different emission sources).

Methods.

We used data from the 2018 Harmonized Cognitive Assessment Protocol sub-study of the English Longitudinal Study of Ageing (N=1,127). Outdoor concentrations of each pollutant were estimated for 2008÷10−2017 and summarised using means and group-based trajectories. Linear regression models were used to assess long-term air pollution exposure relationships with memory, executive function, language, and global cognitive function after adjustment for key individual and neighbourhood-level confounders.

A team of over 150 scientists has achieved what once seemed impossible: a complete wiring and activity map of a tiny section of a mammalian brain. This feat, part of the MICrONS Project, rivals the Human Genome Project in ambition and scope, using cutting-edge AI, microscopy, and teamwork to map