Toggle light / dark theme

NAD⁺ restores memory in Alzheimer’s disease models by correcting RNA errors

Alzheimer’s disease (AD), the leading cause of dementia, affects nearly 40 million individuals globally, resulting in a gradual loss of memory and independence. Despite extensive research over the past decades, no treatments have been found that can halt or reverse the progression of this devastating disease.

In AD, a major contributor to neuronal dysfunction is the . Tau typically plays a crucial role in keeping the internal structure of neurons stable, much like train tracks help trains stay on course. However, in some diseases, tau undergoes abnormal modifications and starts to aggregate, disrupting this transport system, thus leading to neuronal damage and subsequent memory loss.

An international team of researchers has reported a new mechanism by which boosting the natural metabolite NAD⁺ can protect the brain from the degeneration associated with AD. Their paper, titled “NAD⁺ reverses Alzheimer’s neurological deficits via regulating differential alternative RNA splicing of EVA1C,” is published in Science Advances.

White matter connections may drive adolescent cognitive gains, study suggests

Adolescence, the life stage that marks the transition between childhood and adulthood, is known to be a vital period for the brain’s development. During this critical phase, people’s mental abilities, including their problem-solving and memory skills, rapidly improve.

Past neuroscience studies have tried to link these observed cognitive improvements during adolescence to changes in the structure of the brain and the connections between different brain regions. Nonetheless, the relationship between changes in the brain and specific aspects of cognitive performance has not been fully elucidated.

Researchers at Vanderbilt University, CNRS Université de Lyon, and Wake Forest School of Medicine recently carried out a study involving monkeys that was aimed at shedding new light into the underpinnings of mental maturation during adolescence. Their findings, published in Nature Neuroscience, suggest that the cognitive development of adolescent monkeys is associated with a refined connectivity between brain regions, while changes in gray matter structure play a lesser role.

Preventing brain damage in premature babies: Lab-grown brain model reveals new hope

A treatment that could protect premature babies from brain damage showed promise in a recent study in Sweden. Using a first-of-its-kind prenatal brain model created with human cells, researchers observed new details about the effects of cerebral hemorrhages on stem cells during preterm birth. They also successfully tested an antidote that reduced the damage.

Publishing in Advanced Science, the researchers identified how neural stem cells in preterm infants are damaged as a result of a cerebral hemorrhage. Researchers from KTH Royal Institute of Technology, Karolinska Institutet, and Lund and Malmö Universities collaborated on the study.

The study shows that as red blood cells seep into the brain’s subventricular zone (SVZ) and break down, levels of the messenger protein interleukin-1 (IL-1) become elevated. These proteins send strong signals that direct to stop acting like stem cells, says Professor Anna Herland, senior lecturer at the AIMES research center at KTH Royal Institute of Technology and Karolinska Institutet.

Copying consciousness, the future of mind uploading

Whole-brain emulation (often called “mind uploading” in science fiction) refers to the possible future ability to scan a human brain in such detail that a digital replica could be created, capable of functioning, and perhaps even experiencing the world, like the original. While we are far away from this now (the current record is a fruit fly) an increasing number of neuroscientists and entrepreneurs are betting that we may be closer than most think. What is happening in the world of computational neuroscience, and will the world be ready for it?

High-speed imaging tracks live brain cell activity in awake mice

A research team from the School of Engineering at The Hong Kong University of Science and Technology (HKUST) has achieved a breakthrough in brain imaging by developing the world’s first technology to capture high-resolution images of the brains of awake experimental mice in a nearly noninvasive manner.

By eliminating the need for anesthesia, this innovation enables scientists to study in its fully functional state. The advancement promises deeper insights into human brain function in both healthy and diseased conditions, opening new frontiers in neuroscience research.

The study was recently published in Nature Communications in a paper titled “Rapid adaptive optics enabling near-noninvasive high-resolution brain imaging in awake behaving mice.”

Our research partners at UC San Diego have just announced revolutionary findings that challenge conventional understanding of human biology with the publication of their paper titled Neural and Molecular Changes During a Mind-Body Reconceptualization

Meditation, and Open Label Placebo Healing Intervention in the scientific journal Communications Biology.

Neural and Molecular Changes During a Mind-Body Reconceptualization, Meditation, and Open Label Placebo Healing Intervention

The landmark study demonstrates how intensive meditation can trigger the same profound brain activity previously documented only with psychedelic substances – while simultaneously activating measurable biological transformations throughout the entire body.

Can brainless animals think?

Creatures like sea stars, jellyfish, sea urchins and sea anemones don’t have brains, yet they can capture prey, sense danger and react to their surroundings.

So does that mean brainless animals can think?

“Brainless does not necessarily mean neuron-less,” Simon Sprecher, a professor of neurobiology at the University of Fribourg in Switzerland, told Live Science in an email. Apart from marine sponges and the blob-like placozoans, all animals have neurons, he said.

Creatures like jellyfish, sea anemones and hydras possess diffuse nerve nets — webs of interconnected neurons distributed throughout the body and tentacles, said Tamar Lotan, head of the Cnidarian Developmental Biology and Molecular Ecology Lab at the University of Haifa in Israel.

“The nerve net can process sensory input and generate organized motor responses (e.g., swimming, contraction, feeding, and stinging), effectively performing information integration without a brain,” she told Live Science in an email.

This simple setup can support surprisingly advanced behavior. Sprecher’s team showed that the starlet sea anemone (Nematostella vectensis) can form associative memories — learning to link two unrelated stimuli. In the experiment, the researchers trained sea anemones to associate a harmless flash of light with a mild shock. Eventually, the light alone made them retract.

Another experiment showed that sea anemones can learn to recognize genetically identical neighbors after repeated encounters and curb their usual territorial aggression. The fact that anemones change their behavior toward genetically identical neighbors suggests they can distinguish between “self” and “non-self”

Scientists unveil first draft of atlas of the developing brain

The researchers said they have completed a first draft of atlases of the developing human brain and the developing mammalian brain.

The research focused on human and mouse brain cells, with some work in monkey brain cells too. In their initial draft, the scientists mapped the development of different types of brain cells — tracking how they are born, differentiate and mature into various types with unique functions. They also tracked how genes are turned on or off in these cells over time.

The scientists identified key genes controlling brain processes and uncovered some commonalities of brain cell development between human and animal brains, as well as some unique aspects of the human brain, including identifying previously unknown cell types.


Scientists have reached a milestone in an ambitious initiative to chart how the many types of brain cells emerge and mature from the earliest embryonic and fetal stages until adulthood, knowledge that could point to new ways of tackling certain brain-related conditions like autism and schizophrenia.

/* */