Toggle light / dark theme

Brain damage in key region increases susceptibility to others’ impulsive choices, study finds

People who have damage to a specific part of their brains are more likely to be impulsive, and new research has found that damage also makes them more likely to be influenced by other people.

In a new study published in PLOS Biology, a research team found that damage to distinct parts of the (mPFC) was linked to being influenced by impulsive decision-making by others, while another region was causally linked with choosing a smaller reward earlier rather than waiting for a larger prize.

The team from the University of Birmingham, University of Oxford and Julius-Maximilians-University Würzburg worked with participants with brain damage to assess whether they were more likely to be influenced by other people’s preferences.

Teens with depression show unique eye movement patterns linked to memory and attention problems

A new study published in Psychiatry Research: Neuroimaging has found that adolescents with major depressive disorder display unusual eye movement patterns, which are linked to cognitive problems such as memory and attention deficits. The researchers used eye-tracking technology to compare the visual behavior of adolescents with and without depression during different visual tasks. They found that certain eye movement characteristics were significantly different in adolescents with depression and were associated with poorer performance on cognitive tests.

Major depressive disorder often begins during adolescence, a period of intense emotional, social, and cognitive development. Depression in teenagers is not only becoming more common but also tends to recur and interfere with many areas of life, including school, family relationships, and social functioning. In many cases, even when mood symptoms improve with treatment, cognitive difficulties—like trouble with memory, attention, and understanding social cues—can persist. These problems can make it hard for adolescents to return to normal daily activities and may contribute to poor treatment outcomes and higher relapse rates.

In recent years, researchers have become interested in using eye-tracking technology as a non-invasive way to study how the brain processes information. Eye movements, including how often people look at certain parts of an image or how well they can follow a moving object, are known to reflect underlying cognitive processes. For example, smooth and coordinated eye movements require good attention control, while frequent or erratic eye movements might indicate difficulty with focus or information processing. Since brain areas involved in eye control also play a role in cognitive functioning, the researchers wanted to explore whether eye movement patterns could serve as indicators of cognitive problems in depressed adolescents.

Thinking in sync: How brain rhythms support intelligence

When the brain is under pressure, certain neural signals begin to move in sync—much like a well-rehearsed orchestra. A new study from Johannes Gutenberg University Mainz (JGU) is the first to show how flexibly this neural synchrony adjusts to different situations and that this dynamic coordination is closely linked to cognitive abilities.

“Specific signals in the midfrontal brain region are better synchronized in people with higher cognitive ability—especially during demanding phases of reasoning,” explained Professor Anna-Lena Schubert from JGU’s Institute of Psychology, lead author of the study published in the Journal of Experimental Psychology: General.

The researchers focused on the midfrontal area of the brain and the measurable coordination of the so-called theta waves. These brainwaves oscillate between four and eight hertz and belong to the group of slower neural frequencies.

Advancing neuroscience research with high-speed, automated electrophysiology

Understanding the electrical activity of neurons is key to unlocking insights into neurological diseases. Yale researchers have unveiled a high-throughput automated method that captures the electrical activity of large numbers of neurons simultaneously and without bias.

This cutting-edge approach provides a powerful “functional fingerprint” of neuron populations in their natural state, opening new doors to understanding and treating neurological diseases. The work was published June 13 in Nature Protocols.

The patch-clamp technique has long been a gold standard for studying the electrical activity of neurons, the fundamental units of the nervous system. However, the manual execution of this approach is slow and labor-intensive. Recent advances in robotic patch-clamp technologies have improved speed and efficiency, but they are limited to artificially grown neurons rather than neurons in their native unmanipulated state.

Neuroscientists discover biological mechanism that helps the brain ignore irrelevant information

New research suggests the brain uses a learning rule at inhibitory synapses to block out distractions during memory replay. This process enables the hippocampus to prioritize useful patterns over random noise, helping build more generalizable and reliable memories.