Toggle light / dark theme

New possible treatment pathway for Shank3-related autism discovered

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by differences in communication, behavior and the processing of sensory information. Past research has shown that some individuals diagnosed with ASD exhibit specific genetic variants or differences in the regulation of genes.

In some patients, the Shank3 gene was found to be mutated, partially or fully deleted, or not expressed as much. This gene is known to support the creation of junctions at which connected neurons communicate with each other, known as synapses.

Past findings suggest that people diagnosed with ASD who exhibit variants in Shank3 also present abnormalities in the volume, structure and function of white matter. White matter is a brain region filled with a fatty substance known as myelin, which insulates nerves and allows signals to travel faster within the nervous system.

Hidden Brain Energy Leak Links Stress to Depression and Anxiety

Scientists found that reduced ATP signaling in the hippocampus can trigger both depression and anxiety in mice.

Lower ATP levels and a drop in connexin 43 expression appeared to make stressed animals more vulnerable. Manipulating this protein alone was enough to produce mood-related symptoms, while restoring it reversed them.

ATP Signaling and Mood Disorders.

New genetic biomarker flags aggressive brain tumors

Clinicians typically classify meningiomas — the most common type of brain tumor — into three grades, ranging from slow-growing to aggressive.

But a new multi-institutional study suggests that appearances may be deceiving. If a tumor shows activity in a gene called telomerase reverse transcriptase (TERT), it tends to recur more quickly, even if it looks low-grade under the microscope.


Researchers discover that when meningiomas, a type of brain tumor, shows activity in the TERT gene, it tends to recur more quickly.

/* */